motivation, emotion, feeding, drinking, sexual behaviour

Ph-111 planar functional magnetic resonance imaging (EP-MRI) was used to study the activity of the amygdala while three normal female subjects viewed alternating blocks of affectively neutral and affectively negative still pictures. Bilateral activation in the amygdala that was significantly correlated with the changing valence of the visual stimuli was found in all three subjects. These findings are consistent with the large body of data from non-human studies suggesting that the amygdala is a key structure for extracting the affective significance from external stimuli. This is the first known report of phasic amygdala activation detected with EP-MRI in normal human subjects responding to negative stimuli.

Key Words: Human; Amygdala; Echo-planar; Functional magnetic resonance imaging

Introduction

Disruptions in affective behavior resulting from temporal lobe insults were first documented more than a century ago. Brown and Schaefer noted disruptions in emotional behavior, including tameness, increased oro-alimentary exploration, reduced feeding and abnormal sexual behavior, in several species of monkeys following temporal, but not occipital, lobe resections. Kluver and Bucy, rediscovered this phenomenon (the Kluver-Bucy syndrome) in rhesus monkeys following gross temporal lobe lesions. Non-human studies underscore the centrality of one temporal lobe structure, the amygdala, in affective processes. Weiskrantz performed the first specific study of the neuroanatomical basis of the Kluver-Bucy syndrome. Bilateral amygdala lesion in rhesus monkeys produced the classic hyperemotional response to threatening stimuli. In a unique study, Downer prepared split-brain monkeys with a unilateral amygdalaectomy and a lesion to the optic chiasm. When presented with threatening visual stimuli to the eye (hemisphere) with the amygdala, the monkey showed an appropriate fear response. When the same stimuli were presented to the eye (hemisphere) without the amygdala, no response was produced. In rodents, the amygdala have been shown to be necessary for involuntary affective behavior such as the conditioned fear response. Without the amygdala, rats can neither learn, nor once learned, express a conditioned fear response.

Evidence related to the function of the amygdala in human affective processes is inconclusive and largely derived from brain-damaged patients. Bechara and colleagues compared human patients with either complete amygdala, hippocampus or amygdala and hippocampus damage on performance in a conditioning task. Using skin conductance to index conditioned affective associations, the patient with amygdala damage failed to acquire stimulus–affect associations, but correctly identified the target stimuli (the conditioned stimuli). The patient with hippocampus damage acquired the affective associations, but could not identify the target stimuli. The patient with both amygdala and hippocampus damage failed in both respects. Patients with damage to the amygdala also show impairment in the recognition of facial expressions of fear. However, Tranel and colleagues showed that a patient with complete bilateral destruction of the amygdalae was able to acquire non-conscious associations between strangers and the affective valence of their behavior.

Several studies have used positron emission tomography (PET) to examine regional cerebral blood flow or glucose metabolism in the amygdala in response to affective manipulations. With the exception of...
two recent studies that used MRI-PET co-registration techniques to isolate activity in the amygdala, the findings from other studies are questionable due to constraints in the spatial resolution of PET which make it impossible to isolate amygdala activity from that of other nearby structures.

Functional magnetic resonance imaging (fMRI) has better spatial resolution than PET and a temporal resolution that better approximates the time course of affective responses. The current study examined human amygdala activation in response to viewing affective visual stimuli using fMRI in a normal human sample. We hypothesized that bilateral activation in the amygdala would increase when subjects viewed affectively negative rather than neutral pictures.

Materials and Methods

fMRI uses the principles of MRI to non-invasively detect local changes in blood oxygenation coincident with changes in local neuronal activity. Implementation of this technique requires a paradigm that produces alternating brain states every tens of seconds, during which functional images are obtained every few seconds. Changes in MR signal between alternating states reflect changes in neuronal activity. In the current study, the alternating states were negative affect (produced by viewing aversive pictures) and no affect (produced by viewing neutral pictures). Subjects: Six female right-handed subjects (age 18–32 years) were recruited through advertisements in the Department of Psychology and paid $50.00 (US) for their participation. All subjects signed a consent form which was approved by the Institutional Review Board. The experiment took place in three sessions. Session 1 acquainted subjects with the procedures using a mock scanner. Session 2 was the actual scanning session. In Session 3, subjects made ratings of the pictures to which they were exposed.

Stimulus presentation: Still pictures were selected from the International Affective Picture System (IAPS). Based on the large-sample valence (positive–negative) ratings, pictures were selected as neutral (e.g., a book) or negative (e.g., a mutilated face). Moderately positive pictures (e.g., sunset) were selected for a control trial. Pictures were presented on a screen located at the foot of the scanner bed and subjects used a mirror built into a standard head coil to see the screen while in the supine position. Pictures were presented under computer control and synchronized with the start of the scanner for each trial. A trial consisted of 11 blocks of five valence-constant pictures, with each picture presented for 6.6 s. The first trial consisted of blocks of only positive pictures. The second trial consisted of alternating blocks of neutral and negative pictures, always beginning and ending with a neutral block.

Scanning protocol: An initial anatomical scan was used to locate the amygdala in each subject with reference to a standard atlas. Three contiguous 5 mm coronal slices with the middle slice centered on the amygdala were prescribed from which functional data were acquired. A gradient-echo echoplanar pulse sequence (TE = 50 ms, TR = 1500 ms, flip angle = 90°, matrix = 128 x 64, FOV = 40 x 20, NEX = 1) was used to acquire functional images (246 per slice per trial) using a GE Signa 1.5T (General Electric, Waukesha, WI) scanner equipped with Advanced Nuclear Magnetic Resonance (ANMR, Boston, MA) whole-body gradients. A three-dimensional Spoiled GRASS pulse sequence (TE = 14 ms, TR = 35 ms, flip angle = 35°, matrix = 256 x 256, FOV = 20 x 20, NEX = 1) was used to acquire whole-brain anatomical images.

Results

Manipulation check: The subjects’ picture ratings confirmed that the intended manipulation of affective response was successful. The difference in valence ratings across subjects between the neutral (5.18 ± 0.58, mean ± s.d.) and negative (2.45 ± 0.57) pictures was significant (t(53) = 17.66, p < 0.001; 1 = negative to 9 = positive).

Head motion detection and correction: The image data were examined for signs of head movement. This included both visual examination for signs of gross head movement, and examination of correlation patterns. The latter was accomplished by cross-correlating the MR time course of pixels in the region of interest (ROI), the amygdala, with all other pixels in the image. High correlations (positive or negative) between the ROI and the rim of the image are suggestive of head movement. Three of the six subjects had activation patterns consistent with movement artifact. Image data were then motion corrected with the automated image registration (AIR) algorithm using the first image in the time series as the reference image. The inferred head motion based upon the correlation procedure in the three subjects was corroborated by comparing the results of the time course analysis (described below) between the uncorrected and AIR-corrected data. For the three subjects whose data we present, there were no correlation patterns suggestive of head movement, and analysis of the uncorrected and AIR-corrected data yielded virtually identical results. The head movement in the other three subjects was judged to be too severe for motion correction.

Time course analyses: Time course analyses were conducted on the motion-corrected data by
Human amygdala activation

Always begin each scan with a contiguous slice centered on the nucleus accumbens (nAcb). The MR signal in this region was used as a reference in the analysis of blood oxygenation level-dependent (BOLD) signals. The MR signal was measured with a high-resolution 3D spoiled gradient echo sequence (TR = 1500 ms, TE = 40 ms, FA = 20°, 32 slices). Functional imaging was performed with a General Electric Signa 1.5T scanner equipped with a resonance gradient. A 55° flip angle sequence was used for all analyses. The Student's t threshold for multiple comparisons was set at 3.3 (p < 0.01, 450 images, 60 onset images, 3 parameters).

Anatomical co-registration and subject averaging:

The least-squares analysis yields a statistical parametric map (SPM) identifying those regions which have significant paradigm-correlated activity. The analysis of Functional NeuroImages (AFNIs) was used to co-register the SPMs with the anatomical images. This allows precise anatomical localization of the areas of activation, as well as transformation into Talairach coordinates, which permits comparisons across subjects.

Figure 1 shows representative time courses from the left amygdala and the right amygdala of one subject. For purpose of visualization, these time courses were averaged with a 22-point (width of the picture blocks) Hamming window to remove high frequency components which are a function of image-to-image fluctuations (e.g., shot-to-shot variability) during acquisition. The fitting procedure for these pixels yielded a Student's t of 4.99 and 2.83, and activation was significant for both the right (top) and left amygdala (bottom), respectively. The patterns of these time courses are consistent with the hypothesis that there was an increase in activation in the amygdala when subjects viewed negative pictures.

In the left amygdala, there were no pixels with significant paradigm-correlated activity in the amygdala during the trial where subjects saw only neutral pictures. Significant activation in the amygdala was found in all three subjects, though not in the exact location and not at the same levels. The maximum Student's t ranged from 2.75 to 4.99 with activation ranging from 0.75% to 1.86% for the right, and from 2.50 to 3.53 with activation ranging from 1.14% to 3.16% for the left amygdala.

Figure 2 shows areas of common activation across three subjects with a correlation of 0.9. The analyses were performed with a voxel size of 0.5°. The images are the subject's right and left amygdala. The average activation for these pixels varied from 0.50% to 1.50%. Figure 2, right, shows a focus of activation in the lateral region of the right amygdala (Talairach coordinates: x = 26, y = -6, z = -12; Subjects 1 and 3). The average activation for these pixels ranged from approximately 0.5% to 1.85%. The values of the color bars indicate the upper bin boundaries. Note that this figure displays only pixels in these planes that were common across subjects, but bilateral activation in the amygdala was found in all subjects.

Because our hypothesis was about amygdala activation, the planes shown in Figure 2 were selected to display activation in the amygdala to the exclusion of other planes. However, common activation in other regions in these planes is evident. For example, in addition to the robust amygdala activation, the coronal view in the left panel in Figure 2 reveals a small focus of activation (yellow) in the region of the left insular cortex as well as a small focus of activation (red) in the right lateral temporal lobe.
FIG. 2. Coronal (top), sagittal (middle) and axial (bottom) views of anatomical images showing coregistered activation foci. The images are presented in the Talairach coordinate system. Left: bilateral amygdala activation common to Subjects 1 and 2, with coordinates for the foci in the right and left amygdala being $x = -15$, $y = -6$, $z = -11$, and $x = -15$, $y = -6$, $z = -11$, respectively. Right: unilateral (right) amygdala activation common to Subjects 1 and 3, with the coordinates of the focus being $x = -26$, $y = -6$, $z = -12$. Color scale indicates average percentage increase in signal between neutral and negative picture blocks where the values are the upper boundaries of the bins.

1768 Vol 7 No 11 29 July 1996

Discussion

Using a high resolution neuromagnetic technique capable of resolving the activity of multiple cortical structures for the first time in the human brain, we found that the visual stimuli increased the activity in the amygdala, which is known to be involved in the processing of emotional information. In this study, we observed a significant increase in signal intensity in the amygdala in response to the presentation of negative stimuli compared to neutral stimuli.

This change in signal intensity was observed in both the right and left amygdala, indicating a bilateral response to the stimuli. The results are consistent with previous studies that have shown the amygdala to be involved in the processing of emotional information.

We do not have any additional information on the specific regions of the brain that were activated in this study. However, the results are consistent with previous studies that have shown the amygdala to be involved in the processing of emotional information.

Finally, the study suggests that the amygdala is involved in the processing of emotional information in the human brain. Further studies are needed to determine the specific role of the amygdala in the processing of emotional information.
FIG. 2. Coronal (top), sagittal (middle) and axial (bottom) views of anatomical images showing coregistered activation foci. The images are presented in the Talairach coordinate system. Left: bilateral amygdala activation common to Subjects 1 and 2, with coordinates for the right and left amygdala being $x = -15, y = 6, z = -17$, and $x = 15, y = 6, z = -17$, respectively. Right: unilateral right amygdala activation common to Subjects 1 and 2, with the coordinates of the focus being $x = -36, y = 6, z = -12$. Color scale indicates relative increase in signal between neutral and negative picture blocks where the values are the upper boundaries of the bins.
The viewing of the negative pictures resulted in a significant increase in non-specific arousal, one would expect other regions of activation to emerge. In fact, the limited region (1.5 cm) from which we obtained functional images such activation was not found.

Discussion

Using a non-invasive technique with the temporal resolution necessary to capture the time course of an affective response and a spatial resolution capable of localizing the activation of small sub-cortical structures, we have demonstrated for the first time in a normal human sample activation in the amygdala in response to affectively negative visual stimuli. Activation in the amygdala was increased when subjects viewed negative rather than neutral still pictures. This finding is consistent with, and builds upon, the findings from non-human and human lesion studies that have identified the amygdala as the neural structure responsible for extracting affective content from stimuli in the environment.

In this study, it was the affective salience (valence) of the stimuli which changed between picture blocks. This change was correlated with variations in MR signal intensity in the amygdala, reflecting changes in local neuronal activity. The magnitude of the observed MR signal increase in the amygdala ranged between −0.50 and 1.85%. Other cortical and subcortical regions are obviously involved in the processing of these types of stimuli, but those regions are active in the processing of both neutral and negative pictures as, therefore, not revealed as significant changes between these conditions in activation levels.

We do not know from this study whether our findings are associated with the activation of affect per se or with negative affect in particular. Some investigators have claimed a very general role for the amygdala in all affective behavior, while others have implied a specific role for fear-related affect. A comparison in the same subjects is made between amygdala activation in response to negative and positive affective stimuli, this issue will remain unresolved.

Finally, the fact that we observed activation in the amygdala should not be interpreted as showing that activation in response to negative pictures is restricted to this region. In this study, we only imaged a limited portion of brain activity. Our laboratory is now conducting studies that include whole-brain acquisition while both negative and positive affective states are generated. Only with such data will we be in a position to describe the circuitry that participates in affective processes.

Conclusion

This study is the first to show MR signal changes in the human amygdala in response to affective stimuli. Our findings are consistent with the results from non-human and human brain damage studies on the role of the amygdala in affect and extend those studies to normal humans. Because only negative affect was manipulated in our paradigm, we cannot address whether amygdala activation is a non-specific component of the generation of all affect, independent of valence, or whether it is specific to negative affect. Future studies will utilize whole-brain fMRI during both positive and negative affective states in both normal individuals and patients with affective disorders so that the detailed circuitry that subserves affect, differentiates between positive and negative affect, and is abnormal in psychopathology, can be better understood.

References

ACKNOWLEDGEMENTS: This work was supported by a NSF Graduate Fellowship to W.I.L., a NIMH Research Scientist Award (MH00875), NIMH grants P50-MH52354, MH04747 and MH43484, a grant from the John D. and Catherine T. MacArthur Foundation and a NARSAD Established Investigator Award to R.D., a NARSAD training grant (T32-CN00206) to the Department of Radiology and NICHD core grant HD03592 to the Waisman Center.

Received 11 April 1996; accepted 30 April, 1996