
www.elsevier.com/locate/ynimg

NeuroImage 23 (2004) 242–251
Less white matter concentration in autism:

2D voxel-based morphometry
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Autism is a neurodevelopmental disorder affecting behavioral and

social cognition, but there is little understanding about the link between

the functional deficit and its underlying neuroanatomy. We applied a

2D version of voxel-based morphometry (VBM) in differentiating the

white matter concentration of the corpus callosum for the group of 16

high functioning autistic and 12 normal subjects. Using the white

matter density as an index for neural connectivity, autism is shown to

exhibit less white matter concentration in the region of the genu,

rostrum, and splenium removing the effect of age based on the general

linear model (GLM) framework. Further, it is shown that the less white

matter concentration in the corpus callosum in autism is due to

hypoplasia rather than atrophy.
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Introduction

Autism is a neurodevelopmental disorder of brain function that

has begun to attract in vivo structural magnetic resonance imaging

(MRI) studies in the region of the corpus callosum (Egaas et al.,

1995, Hardan et al., 2000; Manes et al., 1999; Piven et al., 1996,

1997). There is little understanding about the link between the

functional deficit and the underlying abnormal anatomy in autism,

which provides motivation for our study. These studies use the

Witelson partition or a similar partition scheme of the corpus

callosum (Witelson, 1989). Witelson partitioned the midsagittal

cross-sectional images of the corpus callosum along the maximum

anterior–posterior line (Talairach and Tournoux, 1988) and defined

the region of the genu, rostrum, midbodies, isthmus, and splenium

from the anterior to posterior direction. Based on the Witelson
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partition, there has been a consistent finding in abnormal reduction

in anterior, midbody, and posterior of the corpus callosum (Bram-

billa et al., 2003a,b).

Piven et al. (1997) compared 35 autistic individuals with 36

normal control subjects controlling for total brain volume, gender,

and IQ and detected a statistically significant smaller midbody and

posterior regions of the corpus callosum in the autistic group.

Manes et al. (1999) compared 27 low functioning autistic individ-

uals with 17 normal controls adjusting for the total brain volume.

They found a smaller corpus callosum compared to the control

group in genu, rostrum, anterior midbody, posterior midbody, and

isthmus but did not find statistically significant differences in the

rostrum and the splenium, although the sample mean of the

rostrum and splenium size are smaller than that of the control

group. Hardan et al. (2000) compared 22 high functioning autistic

to 22 individually matched control subjects and showed smaller

genu and rostrum of the corpus callosum adjusting for the total

brain volume based on the Witelson partition. The smaller corpus

callosum size was considered as an indication of a decrease in

interhemispheric connectivity. They did not detect other regions of

significant size difference. For an extensive review of structural

MRI studies for autism that have been published between 1966 and

2003, one may refer to Brambilla et al. (2003a,b).

The shortcoming of the Witelson partition is the artificial

partitioning. The Witelson partition may dilute the power of detec-

tion if the anatomical difference occurs near the partition boundary.

Alternative voxel-wise approaches that avoid predefined regions of

interests (ROI) have begun to be used in structural autism studies.

Vidal et al. (2003) used the tensor-based morphometry (TBM) to

show reduced callosal thickness in the genu, midbody, and splenium

in autistic children. Hoffmann et al. (2004) used a similar TBM to

show curvature difference in the midbody. Abell et al. (1999) used

voxel-based morphometry (VBM) (Ashburner and Friston, 2000,

2001; Good et al., 2001a,b; Wright et al., 1995) in high functioning

autism to show decreased gray matter volume in the right para-

cingulate sulcus, the left occipito-temporal cortex, and increased

amygdala and periamygdaloid cortex.

The advantage of the VBM framework over the Witelson

partition approach is that it is completely automated and does
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not require artificial partitioning of the corpus callosum that

introduces undesirable bias. Further, it is not restricted to a priori

ROIs enabling us to perform the statistical analysis at each voxel

level and to pinpoint the exact location of the anatomical differ-

ences within ROI even if there is no ROI size differences.

Although VBM was originally developed for whole-brain 3D

morphometry, our study concentrates on the midsagittal cross-

sectional corpus callosum regions to be able to compare the result

with the previous 2D Witelson partition studies such as Hardan et

al. (2000), Manes et al. (1999), and Piven et al. (1997). Hence, we

will prefer 2D VBM over 3D VBM in this study. Let us review the

basis of VBM and its connection to ROI morphometry briefly.
Methods

Voxel-based morphometry

VBM as implemented in SPM’99 computer package (Wellcome

Department of Cognitive Neurology, London, UK, http://www.

fil.ion.ucl.ac.uk/spm) starts with normalizing each structural MRI

to the standard SPM template and segmenting it into white and

gray matter and cerebrospinal fluid based on a Gaussian mixture

model (Ashburner and Friston, 1997, 2000). Based on a prior

probability of each voxel being the specific tissue type, a Bayesian

approach is used to get a better estimate of the posterior probabil-

ity. This Bayesian update of the probability is iterated many times

until the probability converges. This probability is usually called

density. Note that this is not physical density so it should be

interpreted probabilistically. There has been on going discussions

on the amount of image registration and modulation by the

determinant of the Jacobian of deformation fields in VBM (Ash-

burner and Friston, 2001; Bookstein, 2001; Mehta et al., 2003).

In our study, we applied the 2D version of VBM on the

midsagittal cross section of 3D MRI (Fig. 1). Let p(x); x a R2

be the white matter density of the 2D midsagittal cross section of

corpus callosum X. Denote 1X(x) = 1 if x a X and 0 otherwise. The

shape of X is random and we associate it with probability p(x),

PðxaXÞ ¼ pðxÞ:

Then the area of the corpus callosum X is given by

AðXÞ ¼
Z

1XðxÞdx: ð1Þ

Since we are dealing with the normalized corpus callosum

after image registration in SPM’99, the area is the relative
Fig. 1. Left: white matter segmentation of an individual midsagittal MRI from

segmentation with 12 pixel wide FWHM. Right: the sample mean of the smooth
measure. The absolute area can be estimated by multiplying the

determinant of the Jacobian of the deformation (Good et al.,

2001a,b; Shen and Davatzikos, 2003). However, we are not

interested in detecting the global corpus callosum size between

groups but rather a local shape difference after registration. Since

we need to do a statistical analysis after controlling for the total

corpus callosum size, it is not necessary to estimate the absolute

area and we will perform the statistical analysis controlling for

the relative area.

From Eq. (1), we estimate the area of corpus callosum as

Â ðXÞ ¼ EAðXÞ ¼
Z

E1XðxÞdx ¼
Z

pðxÞdx: ð2Þ

So the sum of the white matter density over all voxels gives an

approximation to the area of the corpus callosum. In this context,

ROI morphometry used in Piven et al. (1997), Hardan et al. (2000),

and Manes et al. (1999) can be viewed as a subset of VBM

framework. For instance, ROI morphometry based on Witelson

partition can be performed by segmenting the normalized 2D

midsagittal images.

The white matter density is a probability ranging between 0

and 1 so it is not exactly normally distributed. To make it more

normal, one may apply the logit transform (Ashburner and

Friston, 2000). However, we did not perform the logit transform

since we adapted the usual Gaussian kernel smoothing with

relatively large 15-pixel-wide FWHM to make the white matter

density more normal (Fig. 1). For detailed distributional assump-

tions in VBM, one may refer to Ashburner and Friston (2000)

and Salmond et al. (2002). Let Kr be a Gaussian kernel that

follows bivariate normal N(0; r2I). Kernel smoothing of scalar

function p is defined as convolution

Z
Kr*pðxÞdx ¼

Z Z
Krðx� yÞpðyÞdydx ¼

Z
pðyÞdy: ð3Þ

From Eqs. (2) and (3), it can be seen that the area estimate

Â ðXÞ ¼
Z

Kr*pðxÞdx ð4Þ

is invariant under scale r change. This can be used to estimate the

corpus callosum area from VBM white matter density maps.

Assuming normality for kernel smoothing Kr * p, Â(X) would

be normal so the usual statistical tests based on normality can be

applicable.

We have numerically checked the result (Eq. (4)) comparing the

area estimates with different scales r = d FWHM and r = 10d
SPM’99. Middle: 2D Gaussian kernel smoothing of the white matter

ed white matter density for control groups.
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Table 1

Age and relative total corpus callosum area distribution

Control

Age 15 18 18 16 15 13 18 15 21 17 16 23

Area 154 237 225 216 216 246 156 195 175 223 236 194

Autistic

Age 15 20 17 13 12 15 25 14 15 14 24 18 10 12 22 12

Area 146 238 183 161 104 214 208 238 231 183 198 207 206 174 193 183
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FWHM (FWHM is the full width at the half maximum and d = 2

mm is the resolution of image). The corpus callosum area estimate

does not differ by more than 0.6% in average when scales differ by

10 times. The numerical difference is due to the truncation of the

Gaussian kernel. The total area estimates are given in Table 1.

Again it should be pointed out that these are relative area estimates

after normalization.

Two sample t test

Let pa
1, : : :, pa

m (m = 16) be the white matter density for autism

and pc
1, : : :, pc

n (n = 12) be the white matter density for controls at a

given voxel. We assume pa
i f N(la, ra

2) and pc
jfN(lc, rc

2) inde-

pendently. We denote the sample mean and the variance of pa
i and

pc
j by p̄a, p̄c, Sa

2, Sc
2, respectively. First we test if the autistic group

has more white matter variability in the corpus callosum:

H0 : r2
a ¼ r2

c vs: H1 : r2
a z r2

c :

Under the null assumption, the ratio of the sample variances

Sa
2 = Sc

2 has an F distribution with m � 1 and n � 1 degrees of

freedom. The F map is given in Fig. 2 where the splenium of the

autistic group shows statistically significant larger variability. In

this region, the autism shows nine times more variability (P

value of 0.0004). Now we test if the white matter density

difference between the autistic group and the control group is

statistically significant (Fig. 3):

H0 : la ¼ lc vs: H1 : la V lc; ð5Þ

The classical test statistic T for the Behrens–Fisher prob-

lem depends on the unknown nuisance parameter ra and rc
Fig. 2. The sample standard deviations of autism (left) and control (middle), resp

variability of the white matter concentration in the splenium of the autistic grou

variability but they are not as predominant as the splenium.
that are estimated by sample variances (Tsui and Weerahandi,

1989):

T ¼ d̄a � d̄cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2a=mþ S2c=n

p ftdf

where the degrees of freedom df of the t distribution is

estimated by

df ¼ ðS2a=mþ S2c=nÞ
2

ðS2a=mÞ
2=ðm� 1Þ þ ðS2c=nÞ

2=ðn� 1Þ
:

However, since the degrees of freedom df = m + n � 2 = 26 is

relatively high in our study, we may pool the variance and use the

pooled two sample t statistic

T ¼ d̄a � d̄c

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mþ 1=n

p ftm þ n � 2;

where the pooled variance Sp
2 = ((m � 1)Sa

2 + (n � 1)Sc
2)/(m + n �

2). In fact, we did not see much difference between t statistic

images in two cases so we will pool the variances for the two

sample t test. The advantage of pooling the variance is that the

statistical distribution becomes exact. However, care should have

taken when pooling the variance since it can be shown to lead to

erroneous conclusions when it is applied when population variance

are different for small sample size. An alternate approach would be

to use the concept of generalized P value, which provides exact

probability statement in the presence of nuisance parameters (Tsui

and Weerahandi, 1989).
ectively. The last figure shows the F map showing up to nine times more

p. The genu and the midbody also show larger white matter concentration



Fig. 3. The sample mean of the white matter density of the autistic group (left) and the control group (middle), respectively. The third figure is the difference of

the sample mean. We are interested in testing if this difference is statistically significant. Simply comparing the white matter density difference, the autistic

group shows less white matter concentration in the genu and the splenium of the corpus callosum.
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In the place of a test statistic, they use so-called generalized test

variable and the corresponding P value can be computed exactly.

General linear models

Since all subjects are different in age, brain size, and IQ, there

might be confounding effects of age, brain size, and IQ on the

white matter density. Previous anatomical studies in the corpus

callosum suggest this (Brambilla et al., 2003a,b). On the other

hand, deformation-based morphometry and tensor-based mor-

phometry in the normal developmental studies in children show

that there is relative brain tissue growth in the corpus callosum over

time (Chung et al., 2001; Thompson et al., 2000). In particular,

Chung et al. (2001) showed white matter local volume increase in

the midbody, isthmus, and splenium of the corpus callosum in 28

normal subjects from 12 to 16 years. In our study, the age for the

control group is 17.1 F 2.8, and for the autism group, it is 16.1 F
4.5 years (Table 1). The age ranges for two groups are somewhat

compatible; however, there might be still age effect on the white

matter difference. To evaluate any possible effect of age on the

white matter density, we first fit linear model

density ¼ k1 þ k2 � age ð6Þ

to each group separately using the least-squares method at each

voxel (Figs. 4 and 5). The liner model fits show the dynamic

pattern of different white matter density changes over time between

groups. The pattern of growth in the corpus callosum is different.

The autistic group shows lower white matter density compared to

the control group at the lower age, but gains white matter over time

while the control group shows decreasing white matter density

with age. There thus appears to be age differences for at least some

regions of the corpus callosum and these should be accounted for.

One approach for removing the age effect would be to modulate

the white matter density such that the age effect will not be present.

First, we estimate k1 and k2 for each group via the least-squares

method. Then, adjust the white matter density d(t) at time t via

transform

dðtÞ ! dðtÞ þ k̂2ðt̄ � tÞ;

where k̂2 is the least-squares estimation of k2 and t̄ is the mean

age of both the controls and autistic combined together. This has

an effect of modulating the densities measured at different age to
fixed reference age t̄. A more general approach would be to use a

general linear model (GLM). The general linear model (GLM) is

a flexible framework that can be used in localizing the region of

white matter concentration that are related to covariates such as

age, IQ, brain size, gender, and handedness. We consider the

following GLM:

density ¼ k1 þ k2 � ageþ b1 � groupþ e; ð7Þ

where the dummy variable group is 1 for autism and 0 for

control. To control the possible effect of the corpus callosum size

difference, we will also consider following GLM separately:

density ¼ k1 þ k2 � ageþ k3 � areaþ b1 � groupþ e; ð8Þ

where area is the relative total corpus callosum area given in Eq.

(2). In these formulations, we do not have separate linear

equations as before but combine autism and control group data

together and have a single linear equation. A similar linear model

formulation in the VBM is used in localizing the region of the

gray matter maturation in children (Paus et al., 1999). To

formulate the problem in somewhat general fashion, let z = (z1,
: : :, zk) to be nuisance variables such as age and area and x = (x1,
: : :, xp) to be the variable of interest such as group. Then we have

GLM in the following form

p ¼ zk þ xb þ e

where k = (k1, : : :, kk) V and b = (b1, : : :, bp) V. We assume the

usual zero mean Gaussian noise. Then we test if the group is

significant, that is,

H0 : b ¼ 0 vs: H1 : b p 0:

The fit of model is measured by the residual sum of squares or

the sum of the squared errors (SSE) that are given in Chung et al.

(2004). Then under H0,

F ¼ ðSSE0 � SSE1Þ=p
SSE0=ðmþ n� p� kÞfFp;mþn�p� k : ð9Þ

The larger the F value, it is more unlikely to accept H0. For

testing group difference controlling for age, k = 2 and p = 1, while



Fig. 4. The simple linear fit correlating the white matter density to age at genu (a), midbody (b), and splenium (c). One specific pixel is chosen at each region to illustrate the different dynamic pattern of the density

change. Red color is the autism group and blue color is the control group. The splenium seems to show obvious white matter deficiency in autism but group differences in the genu and the midbody are unclear due

to different associations with age in each group.
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Fig. 5. Linear regression of the white matter density on age. Linear growth model density = k1 + k2 � age is fitted for each group separately. k1 is the

intercept and k2 is the slope of the regression line. The autistic group shows relatively lower white matter density compared to the control at lower age but

gains white matter over time while the control group shows decreasing white matter density with age. The control group shows 2.5% per year decrease of

white matter in the midbody while the autistic group shows 2.5% per year increase of white matter in the genu. White matter decrease in the midbody of

the control subjects is not significant (uncorrected P value, 0.1; corrected P value, close to 1). F test was performed for the fit of the linear model and its P

value is computed.
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for testing group difference controlling for both age and area, k = 3

and p = 1.

For multiple comparisons that account for spatially correlated

error, one may use the result of the random field theory (Worsley,

1994; Worsley et al., 1996), the false discovery rates (Benjamini

and Hochberg, 1995; Genovese et al., 2002), or permutation tests

(Nichols and Holmes, 2002). If F(x) is a smooth F field (Worsley,

1994), the corrected P value for correcting multiple comparisons

over the all pixels in the corpus callosum X is given by

Pð sup
x a X

Y ðxÞ > hÞc
X2
d ¼ 0

ldðXÞqdðhÞ

where ld are the d dimensional Minkowski functionals and qd are
the d dimentional Euler characteristic (EC) density (Worsley et al.,

1996). For nonregular jagged shapes such as the corpus callosum,

the Minkowski functionals can be estimated in the following

fashion. Treating pixels inside V as points on a lattice, V is the

number of subpoints, E is the number of edges connecting each

adjacent lattice points, F is the number of faces formed by four

connected edges. Then, l0 = v(X) = V� E + F = 1, l1 = (E� 2F)d,
2F)d, l2 = Fd2 where d = 2 mm is the resolution of the image

(Worsley et al., 1995). To find the number of edges and pixels

contained in X, we start from an initial face F0 in the splenium of

CC and add an additional face in the lattice one by one while

counting the additional edges and faces. Our data V is taken to be

the region of the white matter density bigger than 0.2 and we

found E = 857 and F = 392. Thus, l0 = 1, l1 = 73d, l2 = 392d2

(Fig. 6). A compatible approach for computing Minkowski func-

tionals for jagged irregular shapes has been implemented in
FMRISTAT package (http://www.math.mcgill.ca/keith/fmristat).

The EC-density for F field with a and b degrees of freedom is

given by

q0 ¼
Z l

h

Cða þ b
2

Þ

C
a
2

� �
C

b
2

� � a
b

ax
b

� �ða � 2Þ
2

1þ ax
b

� ��ða þ bÞ
2

dx;

q1¼k1=2
C

a þ b � 1

2

� �
2

1
2

C
a
2

� �
C

b
2

� � ah
b

� �ða � 1Þ
2

1þ ah
b

� ��ða þ b � 2Þ
2

;

q2 ¼ k
C

a þ b � 2

2

� �

C
a
2

� �
C

b
2

� � ah
b

� �ða � 2Þ
2

1þ ah
b

� ��ða þ b � 2Þ
2

� ðb � 1Þ ah
b

� ða � 1Þ
	 


;

where k measures the smoothness of fields and it is given by

k = 4 ln 2/(2kd2 FWHM).

Subjects and image acquisition

Gender and handedness affect the corpus callosum anatomy

(Luders et al., 2003; Pettey and Gee, 2002; Witelson, 1985, 1989)

so all the 16 autistic and 12 control subjects used in this study are

 http:\\www.math.mcgill.ca\keith\fmristat 


Fig. 6. There are only four possible configuration of adding additional face (white) to already searched regions (gray). Each of the above case corresponds to

adding 3, 2, 1, and 0 edges.
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right-handed males except one subject who is ambidextrous.

Sixteen autistic subjects were recruited for this study from a list

of individuals with a diagnosis of high functioning autism in the

Madison and Milwaukee area maintained for research purposes by

the Waisman center at the University of Wisconsin–Madison.

Diagnoses were confirmed with the Autism Diagnostic Interview-

Revised (ADI-R) or clinical interview administered by a trained

and certified psychologist at the Waisman center. All participants

met DSM-IV criteria for autism or Asperger’s pervasive develop-

mental disorder. Twelve healthy, typically developing males with

no current or past psychological diagnoses served as a control

group. The average age for the control subject is 17.1 F 2.8 and

the autistic subjects is 16.1 F 4.5, which is in compatible age

range. The age and relative total area distribution for each group

are given in Table 1.

High-resolution anatomical MRI scans were obtained using a 3-

Tesla GE SIGNA (General Electric Medical Systems, Waukesha,

WI) scanner with a quadrature head RF coil. A three-dimensional,

spoiled gradient-echo (SPGR) pulse sequence was used to generate

T1-weighted images. The imaging parameters were TR/TE 21/

8 ms, flip angle 30j, 240 mm field of view, 256 � 192 in-plane

acquisition matrix (interpolated on the scanner to 256 � 256), and

128 axial slices (1.2 mm thick) covering the whole brain. Then the

midsagittal cross sections of the white matter segmented images

showing the corpus callosum were extracted and smoothed with

15-pixel-wide FWHM 2D Gaussian kernel (Fig. 1).
Fig. 7. Contour plots of F map showing the statistically significant white matter de

white matter map of 12 control subjects. (a) After controlling for age only. (b) Afte

matter concentration in the splenium for the autistic subjects.
Results

First we fit the white matter density change over age via linear

growth model (Eq. (6)). The white matter increase of 2.5% per

year in the genu of the autistic group is statistically significant

(uncorrected P value < 0.0014; corrected P value < 0.16). Other

regions of the corpus callosum do not show much age effect. The

decrease of 2.5 per year in the midbody of the control group is

not statistically significant (uncorrected P value 0.1; corrected P

value c 1) (Figs. 4 and 5). Since there is no age effect in the

splenium, the white matter difference based on the two sample t

test in that region should be largely due to the group difference

while the white matter difference detected in the genu may be in

fact due to a possible age effect. So we refitted GLMs as

described in the previous section and computed F statistic maps.

We found statistically significant white matter deficiency in the

splenium after controlling for age (corrected P value, 0.099;

uncorrected P value, 0.005; F value, 9.47). See Fig. 7a for the

resulting F map. It is interesting to note that the splenium is the

region of high anatomical variability for the autistic group (Fig.

2). In the splenium, we found nine times more variable white

matter density (P value of 0.0004). Comparing GLM results

(Fig. 7) with the two sample t test results not taking account for

the age effect (Fig. 8), we see similar pattern of statistical map in

both cases indicating the age effect in our study is negligible due

to the compatible age range between groups.
nsity difference. F maps are superimpose on top of the sample mean of the

r controlling for both age and total corpus callosum area. It shows less white



Fig. 8. Left: two sample t statistics. Middle: P value map thresholded at 0.1. Right: P value in logarithmic scale. The log scale is useful in displaying small P

values. The splenium and the genu of the corpus callosum show huge white matter deficiency in autism compared to control.
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Further to account for the possible global corpus callosum size

difference among subjects, we have fitted GLM (Eq. (8)) control-

ling for both age and the total corpus callosum area (Table 1). Due

to a somewhat coarse image registration of SPM’99 that is required

in VBM (Good et al., 2001a,b), Table 1 shows slight variations in

the area estimates although they are not statistically significant. We

fitted

area ¼ k1 þ k2 � ageþ b1 � group

and tested if area is significantly different between groups, that is,

H0 : b1 = 0. There is no statistically significant total area difference

between the groups after image registration (P value, 0.67; F value,

1.005). It reconfirms the fact that the image normalization has an

effect of controlling the total corpus callosum area differences.

After fitting (Eq. (8)), we detected the statistically significant less

white matter concentration in the splenium (corrected P value,

0.097; uncorrected P value, 0.0049; F value, 9.62). On the other

hand, we also detected less white matter concentration in the genu

and rostrum regions (corrected P value, 0.16; uncorrected P value,

0.0086; F value, 8.18); however, the result may not pass very

conservative a = 0.1 level test (see Fig. 7b). Note that the ROI-based

morphometry using the total corpus callosum area was not able to

detect the group difference while the VBM was able to pinpoint the

splenium and possibly the genu within the ROI as the regions of

white matter concentration difference. This further demonstrates the

advantage of using the VBM over the ROI-based morphometry.

To check for possible image processing artifacts, we applied our

statistical tests on null data constructed from randomly selecting

8 from 16 autism and 6 from 12 controls and combining them

together to form a new group consisting of 14 subjects. Combining

the remaining 14 subjects formed the second new group. After-

ward, the same image processing and VBM were performed on the

null data set revealing no significant result. Note that we are not

trying to compute corrected P value via random permutation test

but rather to check if our image processing and data analysis

procedures might give false positives. A similar approach of

generating null data and checking possible image processing

artifacts has been proposed in Chung et al. (2003) for a child brain

development study.
Discussion

The 2D version of the voxel-based morphometry was used in

the midsagittal cross section of MRI quantifying the white matter

deficiency in high functioning autism. Accounting for an age
effect, statistically significant white matter deficiency in the genu,

rostrum, and splenium of the corpus callosum was detected in the

autistic group, but there is no significant difference in the midbody.

This may suggest impaired interhemispheric connectivity in frontal

and particularly temporal and occipital regions. It is interesting to

note that Piven et al. (1996) found increased volume of the parietal,

temporal, and posterior lobes, but not the frontal lobes in autism

compared to normal control. Carper et al. (2002) did not find

statistically significant frontal, temporal, parietal, and occipital

white matter volume differences between the groups in age range

7.5–11.5 years; however, their regression analysis showed that the

predicted white matter volume at age 12 is substantially lower in

the autistic group. The orbital frontal cortex projects through the

rostrum while occipital and inferior temporal cortex project

through the splenium (Hardan et al., 2000). Therefore, our findings

indirectly suggest the impaired interhemispheric connectivity in

those cortical regions.

The deficit in splenium white matter may be associated with the

abnormalities in face processing and particularly in the identifica-

tion of emotion in faces (Dalton et al., 2003). In normal subjects,

faces activate the right fusiform area and the verbal identification

of the emotion in a face likely requires transfer of information

between the hemispheres in the splenium region. The deficit found

here in the autism group may at least in part underlie the

abnormalities in emotional face processing observed in this group

(Dalton et al., 2003).

Linear growth models were fitted for autism and control groups

separately to show different pattern of white matter density change

over time. Subjects with autism shows lower white matter concen-

tration at the lower age range in almost all parts of the corpus

callosum, but the white matter density increases more rapidly over

age to catch up with that of the control subjects. A similar result is

reported in Courchesne et al. (2001) that shows more cerebral

(10%) and cerebellar (39%) white matter in 2- and 3-year-old

autistic subjects but did not find such enlarged white matter

volume in older children and adolescents. On the other hand, the

normal control group seems to show a higher concentration of the

white matter at younger ages but decreasing density in the midbody

with increase in age. However, this white matter decrease detected

in the midbody is not statistically significant.

The smaller callosal size in the genu and splenium might be

attributed to hypoplasia rather than atrophy. In particular, we found

a statistically significant 2.5%/year increase of the white matter in

the genu for the autistic group.

A similar result was obtained using tensor-based morphometry

where Vidal et al. (2003) compared 15 autistic subjects of age 9.9F
3.2 years to a group of 13 control subjects of age 10 F 2.1 years.
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They found the most significant reduction of the corpus callosum

size in the genu, splenium, and midbody in decreasing order. The

slight difference with our voxel-based morphometry result might be

due to the different morphometric techniques plus manual segmen-

tation used in Vidal et al. (2003), while no manual segmentation of

any sort was applied in our VBM approach.
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