Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:
Results from the ENIGMA-PGC PTSD Consortium

Running Title: Network-Based Cortical Changes in PTSD

Dalin Sun 1,2, Gopalkumar Rakesh 1,2, Emily K. Clarke-Rubright 1,2, Courtney C. Haswell 1,2
Mark Logue 15, Erin N. O'Leary 7, Andrew S. Cotton 1, Hong Xie 7, Emily L. Dennis 8, 11, Neda
Jahanshad 4, Lauren E. Salminen 4, Sophia I. Thomopoulos 4, Faisal Rashid 4, Christopher R. K.
Ching 7, Satski B. J. Koch 12, 13, Jessie L. Frijling 17, Laura Navon 12, 14, Mirjam van Zuiden 47, Xi
Zhu 16, 17, Benjamin Suarez-Jimenez 10, 16, Anika Sierik 51, Henrik Walter 51, Antje Manthey 51,
Jennifer S. Stevens 19, Negan Fani 45, Sanne J.H. van Rooij 16, Murray Stein 16, Jessica
Bomyea 16, Inga Koerte 5, 27, Kyle Choi 21, Steven J.A. van de Weerf 22, 27, Robert R. J. M.
Vermeren 27, Julia Herzog 21, Lauren A.M. Lebois 25, 26, Justin T. Baker 27, Kerry J. Reesler 16, 25,
19, Elizabeth A. Olson 25, 26, Thomas Straube 24, Mayuresh S. Korgaonkar 20, Elpiniki Andrew 31,
Ye Zhu 32, 35, Gen Li 32, 35, Jonathan Ipaer 24, Anna Hudson 30, Matthew Peverill 30, Kelly
Sambrook 57, Evan Gordon 26, 47, Lee Baugh 13, 14, Gina Forster 47, 48, Raluca Simona 47, 48,
Jeffrey Simons 47, 48, Vincent Magnotta 46, Adi Maron-Katz 41, Stefan du Plessis 46, Seth Disney 46,
39, Nicholas Davenport 39, 50, Dan Grupo 51, Jack Nitschke 52, Terri A. deRoon-Cassini 53,
Jacklyn Fitzgerald 23, John H. Krystal 55, 56, Igal Levy 55, 56, Miranda Ollf 13, 57, Dick J. Valtman 59,
Li Wang 39, 50, Yuval Neria 54, Michael D. De Bellis 39, Tanja Jovanovic 54, 55, Judith K. Daniels
61, Martha Shenton 62, Nic J.A. van de Wee 32, 35, Christian Schmah 54, Melissa L. Kaufman 26, 39,
Isabelle M. Rossa 45, 46, Scott R. Sponheim 45, 46, David Bernd Hofmann 39, Richard A. Bryant 54,
Kelene A. Forcho 45, 45, 46, Dan J. Stein 34, Sven C. Mueller 25, 60, Luan Phan 57, 58, Katie A.
McLaughlin 49, Richard J. Davidson 41, 49, 50, Christine Larson 71, Geoffrey May 43, 44, 71, Steven M.
Nelson 30, 38, 72, Chadi G. Abdallah 55, 56, Hassaan Gormaa 73, Amit Etkin 47, 71, Soraya Seidat 48,
Ilan Harpaz-Rotem, Israel Liberzon, Xin Wang, Paul M. Thompson, Rajendra A. Morey

1 Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
2 Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
3 National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.
4 Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
5 Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.
6 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
7 Department of Psychiatry, University of Toledo, Toledo, OH, USA.
8 Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
9 Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
10 Department of Neurology, University of Utah, Salt Lake City, UT, USA.
11 Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, CA, USA.
12 Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
13 Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands.
14 Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands.
15 Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
16 New York State Psychiatric Institute, New York, NY, USA.
17 University Medical Centre Charité, Berlin, Germany.
18 Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
19 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
31. Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany.
32. Health Services Research Center, University of California, San Diego, La Jolla, CA, USA.
33. Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.
35. Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
36. Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
37. Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA.
38. Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, MA, USA.
39. Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
40. Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.
41. Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia.
42. Department of Psychology, University of Sydney, Westmead, NSW, Australia.
43. Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
44. Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
45. SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
46. Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
47. Department of Psychology, University of Washington, Seattle, WA, USA.
48. Department of Radiology, University of Washington, Seattle, WA, USA.
49. Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.
50. Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.
Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.

Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.

Sioux Falls VA Health Care System, Sioux Falls, SD, USA.

Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand.

Department of Psychology, University of South Dakota, Vermillion, SD, USA.

Department of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA.

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.

Minneapolis VA Health Care System, Minneapolis, MN, USA.

Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.

Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.

Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.

Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.

Department of Psychology, Marquette University, Milwaukee, WI, USA.

Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.

ARQ National Psychotrauma Centre, Dieren, The Netherlands.

Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands.

Healthy Childhood Brain Development Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA.

Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands.

VA Boston Healthcare System, Brockton Division, Brockton, MA, USA.

Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA.

School of Psychology, University of New South Wales, Sydney, NSW, Australia.

Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA.

Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain.

Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.

Mental Health Service Line, Jesse Brown VA Chicago Health Care System, Chicago, IL, USA.

Department of Psychology, Harvard University, Cambridge, MA, USA.

Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.

Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA.

Department of Psychiatry, Pennsylvania State University, State College, PA, USA.

VA Palo Alto Health Care System, Palo Alto, CA, USA.

Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.

* Corresponding Author
Rajendra A. Morey, M.D.
40 Duke Medicine Circle, Room 414
Durham, NC 27710 USA
Phone: 919-289-0411 ext. 6425
Facsimile: 919-416-5612
E-mail: rajendra.morey@duke.edu
Abstract

Background: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA).

Methods: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6-28.2 years) by the ENIGMA-PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks.

Results: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks.

Conclusions: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD.
Keywords: PTSD, Cortical Thickness, Surface Area, Structural Covariance, Brain Network.
Depression.
Introduction

Posttraumatic stress disorder (PTSD) is a psychiatric condition that develops in vulnerable individuals after experiencing or witnessing a life-threatening event (1). PTSD-related changes in cortical thickness (CT) (2-5) and surface area (SA) (6, 7) are found in specific cortical regions. However, relatively little is known about how PTSD affects coordinated patterns of CT and SA differences among affected cortical regions. We sought to examine PTSD effects on networks made up of cortical regions that have the greatest and the least between-group differences in CT and SA, identifying such networks may lend support for one or more etiopathologic models of PTSD.

Structural covariance (SC) refers to the phenomenon of covarying structural brain imaging measures between cortical regions and across individuals. This covariance may be instantiated as a structural covariance network (SCN). Structural covariance network measures are shown to be concordant with tract-based white matter connectivity, synchronous neuronal activity (e.g. functional connectivity) (8, 9), and spatial patterns of gene transcription, each of which lend biological support to SCNs (10). SCNs may index mutually trophic factors between regions that covary over the course of neurodevelopment (9). Differences in SC are associated with a variety of neuropsychiatric disorders including PTSD (11-13), schizophrenia, autism, obsessive compulsive disorder (14, 15), and even trauma exposure (16).

Our investigation of structural networks with significantly different covariance was motivated by two complementary models for understanding PTSD (1). There is converging evidence that neurobiological mechanisms drive concerted patterns (covariance) of atrophy or hypertrophy across selected brain regions. There is generally more evidence supporting a role for CT-derived networks than SA-derived networks. Concerted processes operative in healthy
neurobiological states are perturbed by disease to effect patterns of network atrophy or hypertrophy. These neurobiological perturbations may manifest as changes in network covariance. Neurobiologically deleterious processes in PTSD may instigate atrophy in a coordinated manner across many regions to reveal atrophic networks. Deleterious processes include chronic alteration of stress hormone levels such as cortisol and norepinephrine (17, 18), epigenetics mechanisms such as methylation (19, 20), inflammatory processes such as oxidative stress (21) and cytokines (22), and accelerated aging through the combined effect of these and other processes (23). (II) Alternatively, between-group differences in network SC may support one or the other prevailing neural systems models of PTSD. For instance, a dominant model of PTSD is that fear learning systems go awry in the aftermath of trauma. Behaviorally, slow or incomplete fear extinction and rapid fear-reinstatement contribute to symptoms of PTSD. Effective fear learning is dependent on the healthy function of underlying brain networks. Functional connectivity networks have been found to be congruent with structural covariance networks (24, 25). Thus, the between-group differences in structural networks may simply reflect the between-group differences in functional networks, and these differences pervade networks (structural and functional) involved in fear learning behavior. It is also possible we might find hypertrophy across different networks that mediate compensatory responses to disrupted fear learning.

Wanner and colleagues (26) pioneered an innovative method to investigate the mean SC of networks constituted from regions selected by rank-ordering regions most affected by the illness of interest. This method considers only the most highly ranked regions in forming networks rather than all regions as in previous SCN analyses. Their findings in schizophrenia, suggest that some cortical networks connecting diverse regions may propagate cortical features from one region to another, leading to distributed cortical remodeling (9). Our approach, which modified their method, considered 3 classes of networks. (i) regions most affected by virtue of...
lower CT in PTSD formed so-called atrophic networks. (ii) Regions most affected by virtue of higher CT in PTSD formed so-called hypertrophic networks. (iii) Regions least affected by PTSD formed stable networks. Rank-ordering of regions was based on the effect size of between group differences in CT or SA. The threshold for considering effect sizes (top-n) was initially set to the 2-most affected regions, and was repeated for networks of up to 148 regions (top-n = 2, 3, 4, … 148). Thus, networks ranging in size from 2 to 148 regions, in increments of 1 region, were tested. The SC of a network was calculated as the average effect size of the regions under consideration.

Importantly, even in the absence of statistically significant group-differences for individual cortical regions, significant group differences in covariance were detected in networks consisting of regions with the greatest between-group differences. We examined both CT-based and SA-based networks because CT and SA index distinct features of neuronal organization (27-29). This approach enhanced sensitivity to cortical morphometry and network covariance differences associated with PTSD, given that CT- and SA-based networks may reflect different interactions between regions or distinct aspects of the same interaction between regions (30, 31). Cortical volume was not examined as it is readily derived from mean CT and SA by simple multiplication of these two terms. However, CT and SA possess different biological, developmental, and genetic determinants as we discuss later.

We hypothesized that the mean covariance of n-region networks would be higher than the mean covariance of randomly selected n-region networks in both PTSD and trauma-exposed control groups. Confirmation of this hypothesis would tell us that networks constituted from selected (top-n) regions are more structurally interconnected than networks of the same size composed of randomly selected regions. We further hypothesized that mean SC would be modulated by PTSD diagnosis, as well as by PTSD and comorbid depression, given the two disorders are
highly comorbid (32). We predicted greater impact of PTSD on SA-based networks than on CT-based networks because SA generally drives performance more directly for a variety of cognitive and affective processes (33, 34). We also know that SA has an outsized role compared to CT in various neurobiological, neurodevelopmental, and neurogenetic processes. We predicted, because stable networks are made of regions that are least affected by PTSD, their covariance might be stronger than in non-PTSD since these networks of the least affected regions might compensate for disrupted networks composed of highly affected regions. We posited that because atrophic networks are made of regions most diminished by illness, the disease process would not necessarily affect all network regions in a systematic way, effectively lowering covariance. By contrast, we predicted that traumas-exposed non-PTSD subjects might be protected from developing symptoms because their atrophic networks maintained their healthy level of covariance. If hypertrophic networks result from higher-than-normal levels of trophic factors, whereas atrophic networks result from lower-than-normal levels of trophic factors, then we might reason that atrophic networks and hypertrophic networks would experience the same perturbations. However, given evidence that stress hormones and inflammatory processes play a role in regional atrophy but a lack of evidence for a role in regional hypertrophic, we predicted that hypertrophic networks would demonstrate different outcomes in relation to PTSD than atrophic networks. Specifically, we hypothesized that atrophic networks, unlike hypertrophic networks, would play a central role in modulating the effects of PTSD. Finally, we explored interaction effects of sex, age, and depression on PTSD.
Methods

Participants

All data, aggregated by the PGC-ENIGMA PTSD Working Group, was shared by 29 sites located in five countries (N = 3,436 for CT, and 3,436 for SA). Demographic and clinical information are summarized in Table 1. Only participants with clear information of PTSD diagnosis and sex were included in the following analyses (PTSD/Non-PTSD N = 1,344/2,073 for CT, and 1,348/2,066 for SA). The specific psychometric instruments and MRI acquisition parameters used at each study site are listed in Supplementary Tables S1 and S2, respectively. Detailed information of clinical measurements please see Supplementary Methods. All study sites obtained approval from local institutional review boards or ethics committees. All participants provided written informed consent.

Imaging Data Preprocessing

Details of imaging data preprocessing please see Supplementary Methods.

Harmonizing Data Across Sites

ComBat was utilized to harmonize CT and SA values by removing the effects of study sites while preserving inherent biological associations in the data (35). More details please see Supplementary Methods.

Adjusting for Confounding Factors
Age, age², sex, and mean whole-brain CT (or SA) estimates were regressed from the CT (or SA) estimates with a linear model (36). The age² term adjusted for possible nonlinear effects of age on CT (or SA). The mean whole-brain CT (or SA) estimate was included as a regressor to adjust for globally higher CT (or SA) estimates to reflect larger regional CT (or SA) estimates. More details please see Supplementary Methods.

Top-n Regions SC Analyses

The pipeline for the top-n regions SC analysis is shown in Fig. 1A. The top-n regions SC analysis was limited to networks consisting of the top-n (n = 2 to 148) cortical regions that were selected by rank-ordering PTSD-related changes in CT or SA by Cohen’s d effect sizes (Fig. 2 and Supplementary Tables S4). Standardized effect size estimates such as Cohen’s d are independent of the units or magnitude of CT or SA values.

We examined three types of rank-ordering of regions to generate 3 network types (see Fig. 1B): (i) regions with higher CT in PTSD than non-PTSD were ordered from the largest positive to the largest negative effect size were used to construct hypertrophic networks, (ii) regions with higher CT in non-PTSD than PTSD were rank-ordered from the largest positive to the largest negative effect size were used to construct atrophic networks, and (iii) regions identified by comparing CT in PTSD to non-PTSD groups were rank-ordered from smallest to largest effect size were used to construct stable networks. The same approach used for CT was repeated for SA. An illustration depicting CT-based hypertrophic networks for top-3, top-10 and top-50 regions are shown in Fig. 1C.

Pearson correlation coefficients were computed across subjects per group between the CT (or SA) estimates for each of pairs of regions with the network. All correlation coefficients were r_{40}-
z-transformed to improve normality and yielded a unique connectivity matrix for each participant group. The resulting matrix quantified the SC, which was interpreted for the present study as a measure of the connectivity strength between regions.

Actual Networks versus Random Networks

The mean SC (mean of all positive SC values within a network) of an actual network of the top-n regions was contrasted (i.e., mathematical subtraction) with the values of mean SC from 5,000 random networks consisting of n randomly chosen regions. This test was performed for SC measured in PTSD and non-PTSD groups, as well as between-group difference in SC. The randomly chosen regions were matched to the top-n regions for each value of n, based on the number of regions in each hemisphere and the mean Euclidean distance between all possible pairs of regions. The Euclidean distance was calculated based on the distance between the centers of cortical regions. This approach was conducted by generating 5,000 randomly chosen sets of n-regions that were matched on the number of regions per hemisphere. We then repeatedly replaced the set of n-regions with the largest or smallest mean distance by a randomly generated set of n-regions until the mean distance of the actual regions was not significantly different than the mean distance from the set of randomly chosen n-regions (one-sample t-test thresholded at 5%), or the number of searches exceeded 3,000.

We conducted replication analyses to test the reliability of our results, performed two tests of statistical significance that were complementary to each other—the global test and the individual test, and corrected for multiple comparisons using the false discovery rate (FDR) method (37). More details please see Supplementary Methods.
To test the hypothesis that brain hubs that are strongly connected with other areas (38), play a role in the spatial distribution of PTSD-related cortical changes, we investigated the association between the effect size of cortical changes for each region and the average of positive SC between said region and all the other cortical regions. Details please see Supplementary Methods, Supplementary Results, Supplementary Discussion.

PTSD X Sex Interaction

To investigate the modulation of sex on PTSD-related SCNs, we first divided PTSD and non-PTSD groups into male and female subgroups (see Supplementary Table S5). Two-way interactions were calculated by first contrasting PTSD (relative to its random networks) to non-PTSD (relative to its random networks) within each sex subgroup, and then calculating the difference between the two contrasts. More detailed comparisons between each pair of subgroups were conducted when there was a significant interaction effect between PTSD diagnosis and sex.

PTSD X Age Interaction

To investigate the modulation effect of depression on PTSD-related SCNs, we first divided PTSD and non-PTSD groups into eight decadal subgroups based on age: Age<10, 10sAge<15, 15sAge<20, 20sAge<30, 30sAge<40, 40sAge<50, 50sAge<60, Age=60 (see Supplementary Table S6). Two-way interactions were calculated by first contrasting PTSD (relative to its random networks) to non-PTSD (relative to its random networks) within each age subgroup, and then calculating the difference between the two contrasts. More detailed comparisons between each pair of subgroups were conducted when there was a significant interaction effect between PTSD diagnosis and age.
PTSD x Depression Interaction

To investigate the modulation effect of depression on PTSD-related SCNs, we first divided PTSD and non-PTSD groups into subgroups based on depression diagnosis consisting of two subgroups: depressed and non-depressed (see Supplementary Table S7). Two-way interactions were calculated by first contrasting PTSD (relative to its random networks) to non-PTSD (relative to its random networks) within each depression subgroup, and then calculating the difference between the two contrasts. More detailed comparisons between each pair of subgroups were conducted when there was a significant interaction effect between PTSD diagnosis and depression.
Results

Effect Size of CT and SA differences

Effect sizes for between-group differences in CT and SA are shown in Fig. 2 and reported in Supplementary Tables S4. Effect sizes ranged from -0.103 (atrophic) to +0.112 (hypertrophic) for CT, and from -0.110 (atrophic) to +0.083 (hypertrophic) for SA.

Top-n Regions SC Analyses

More detailed results of actual networks versus random networks in PTSD (Fig. 3 and Table 2) and in non-PTSD (Fig. 4 and Table 2) are listed in Supplementary Results for the methodologic confirmation.

PTSD versus Non-PTSD. As displayed in Fig. 5 and Table 2, global tests showed that PTSD versus non-PTSD participants had lower mean SC in both CT-based ($p = 0.014$) and SA-based ($p = 0.024$) atrophic networks.

No significant differences in CT-based ($p = 0.998$) and SA-based ($p > 0.5$) hypertrophic networks, as well as CT-based ($p > 0.5$) and SA-based ($p > 0.5$) stable networks. No individual test results survived correction (p-values > 0.05).

Replication Analyses Results. As shown in Fig. 6, the global-tests results displayed in Figs 3, 4, 5 and Table 2 are reliable because the AUC of mean SC for the results based on all 29 sites were always located within the 95% confidence interval of the AUC of mean SC from 5,000
iterations leaving out 3 different sites with each iteration of the analysis across all types of networks.

Only a very small number of the individual-test results were beyond their 95% confidence intervals. They are the CT-based stable network with top-24 regions in the non-PTSD group, the SA-based atrophic network with top-11 regions for the PTSD versus non-PTSD comparison, and the SA-based hypertrophic networks with top-32, 33, 34, or 35 regions for the PTSD versus non-PTSD comparison.

PTSD x Depression Interaction. As listed in Fig. 7, global tests showed a significant interaction effect in CT-based atrophic networks ($p = 0.029$, Fig. 7A). Further analyses showed that participants with depression alone had greater mean SC than the participants with PTSD and comorbid depression ($p < 0.001$), PTSD alone ($p < 0.001$), and healthy controls ($p < 0.001$).

There was a significant interaction effect in SA-based atrophic networks ($p = 0.001$, Fig. 7B). Further analyses showed that participants with PTSD alone had greater mean SC than participants with PTSD and comorbid depression ($p < 0.001$) and healthy controls ($p = 0.014$). Participants with depression alone also had greater mean SC than participants with PTSD and comorbid depression ($p < 0.001$) and healthy controls ($p < 0.001$).

There was a significant interaction effect in SA-based hypertrophic networks ($p = 0.014$, Fig. 7D). Further analyses showed that PTSD patients with co-morbid depression ($p = 0.029$) and healthy controls ($p < 0.001$) had greater mean SC than those with depression alone. No other global tests (p-values > 0.2) and no individual tests (p-values > 0.05) survived correction.
Effects of PTSD x Sex interaction. Global tests showed that females with PTSD ($p = 0.029$) and males without PTSD ($p = 0.014$) had greater mean SC in CT-based atrophic networks than females without PTSD. Males without PTSD had greater mean SC in CT-based stable networks than males with PTSD ($p = 0.014$) and females without PTSD ($p < 0.001$). No significant PTSD x sex interaction effect (global p-values > 0.1) was found in the other types of networks.

Effects of PTSD x Age interaction. An inverted-U relationship between decadal age and mean SC was observed in CT-based atrophic networks in both non-PTSD participants, peaking in the 3rd decade, and PTSD patients, peaking in the 2nd decade, and SA-based hypertrophic networks in PTSD patients and non-PTSD patients, both peaking in the 2nd decade. PTSD-related differences in mean SC were observed in different age groups, especially in the 1st decade, represented by lower mean SC in CT-based atrophic networks ($p < 0.001$) and SA-based hypertrophic networks ($p = 0.019$), as well as higher mean SC in CT-based hypertrophic ($p < 0.001$) and stable ($p < 0.001$) networks, in patients with PTSD compared to non-PTSD participants.
Discussion

We investigated CT-based and SA-based structural covariance networks composed of regions with the most atrophic, most hypertrophic, and most stable relationships to PTSD relative to trauma-exposed controls. Three network classes were comprised of regions selected based on the effect size of PTSD-related differences in regional CT and SA. We compared the mean SC of these networks to random networks in PTSD and non-PTSD groups, respectively. We also investigated the role of PTSD diagnosis and PTSD severity on SC, and interaction effects of PTSD with age, sex and depression. We performed methodologic confirmation by demonstrating that PTSD and non-PTSD groups had higher SC in CT-based atrophic networks, SA-based atrophic networks, and SA-based hypertrophic networks than corresponding random networks (Table 2 and Fig. 3, 4). Methodologic confirmation also showed the PTSD group had higher SC in CT-based hypertrophic networks and CT-based stable networks than corresponding random networks. Of particular interest and consistent with a priori hypotheses, we discovered that participants with PTSD had lower SC than trauma-exposed non-PTSD participants in CT-based and SA-based atrophic networks (Table 2 and Fig. 5). Furthermore, depression alone had higher SC in both CT- and SA-based atrophic networks, and lower SC in SA-based hypertrophic networks compared to PTSD with comorbid depression and compared to healthy controls (Fig. 7A, B, D). Patients with PTSD alone showed lower SC in CT-based atrophic networks than patients with depression alone (Fig. 7A), and higher SC in SA-based atrophic networks compared to PTSD with comorbid depression and to healthy controls (Fig. 7B).

Our main finding shows that the networks composed of regions having the greatest PTSD-related atrophy, have significantly lower network covariance in the PTSD group than in the trauma-exposed control group. This finding was present for networks derived from both CT and
SA. A number of interpretations of this finding are tenable. First, we note a degree of consistency between CT-based and SA-based networks in our results concerned with PTSD diagnosis. Many cortical regions within networks that are affected by PTSD are strongly implicated (by definition) in PTSD such as insula, orbital frontal cortex, anterior cingulate, and subcallosal gyrus. However, our present study is not focused on the status of individual regions, but rather, in network perturbations associated with PTSD. Of particular note, the functional networks previously implicated in PTSD comport with the present structural network findings such as low-level perceptual networks (39), salience network (40), default mode network (41), and central executive network (42), also referred to as the fronto-parietal network (43). Our finding of structural networks involving medial prefrontal cortex, posterior cingulate cortex (SA-based only), and angular gyrus, are canonical regions of the default mode network, which is also strongly implicated in PTSD. Our finding of structural networks involving anterior cingulate cortex, and insular cortex recapitulated salience network differences that have been reported in PTSD. However, our structural network findings did not recapitulate prior reports of central executive network involvement in PTSD, but the largest meta-analysis of network differences in PTSD did not find central executive network involvement (40), either. Unfortunately, there is a profound dearth of published findings on structural covariance network differences in PTSD for purposes of comparison. It is possible that the cortical networks or network mechanisms that propagate PTSD-related structural atrophy are dampened by the disease itself or dampened unevenly across brain topography. Alternatively, individuals with weaker connections in atrophic networks may be more vulnerable to PTSD. Unfortunately, our cross-sectional study design is unable to discern causal factors that contribute to PTSD.

In addition to functional networks, converging evidence of inflammatory processes, which contribute to PTSD, preferentially impact the same regions that constitute atrophic networks we identified. The medial prefrontal cortex, insula, and anterior cingulate are all preferentially
impacted by inflammatory processes that plague PTSD and other fear- and anxiety-based conditions (44). While the amygdala and hippocampus are also affected by inflammatory processes, we included only cortical structures, which have a uniquely measurable CT and SA. Stress hormones pose pronounced deleterious effects to the medial prefrontal cortex (45) and to the orbitofrontal cortex (46), which also featured prominently in the atrophic networks we linked to PTSD. Evidence of stress hormone effects on the brain are strongly informed by animal models. In humans, frontoparietal connectivity is disrupted after exposure to one month of intense academic stress (47). Thus, stress induced changes to medial prefrontal cortex, orbital frontal cortex, and frontoparietal regions were present in atrophic networks we linked to PTSD. Epigenetic effects on the brain have been linked to intergenerational trauma and its effects, particularly on the medial prefrontal cortex (48, 49). Epigenetic regulation of the FKBPs gene in response to early trauma is implicated in PTSD pathogenesis (50). The methylation of FKBPs CpG of intron 7 is associated with lower gray matter in bilateral orbital frontal gyrus (51). Epigenetic regulation at the stress-responsive genes that encode the pituitary adenylate cyclase–activating polypeptide (ADCYAP1) and CpG island methylation levels of its receptor ADCYAP1R1 predict PTSD symptom severity (50). Thus, inflammation, stress hormones and epigenetics, all appear to play a role in SC network difference linked to PTSD.

The present study extends several facets of earlier SC reports in PTSD. Broadly, the present study has three major methodological differences compared to published reports: (i) While we focused only on regions at the extremes of between-group differences in constructing networks, prior studies have considered all regions in such covariance networks, which compromises power compared to the feature reduction strategy we implemented. (ii) Our sample size (n=3,400) is 10-fold larger than any previous study (11). (iii) Two prior studies were focused on children and adolescents (n=88 and n=120) (12, 52) and a third study focused on remitted PTSD in adults (n=317) (11). Thus, the present study is uniquely situated with respect to
statistical power, a target population from a broad age-range, and illness chronicity. Our study extends the methodology developed by Wannan et al. (28) by investigating CT and SA of hypertrophic, atrophic, and stable networks separately rather than considering only the CT of atrophic networks. We show that some brain networks, independent of disease, mirror the spatial distribution of disease-related changes in cortical morphometry, thus confirming the work of Wannan et al. (26). Our results demonstrate for the first time that the SC of three different network classes are each uniquely associated with PTSD. We explicitly investigated stable networks, which could be summarily dismissed as negative findings since the contributing regions have minimal between-group differences. However, negative findings do not necessarily indicate that group differences in SC are absent. Negative findings may indicate insufficient statistical power. The sample size of the present study provides sufficient power to detect extremely small effect sizes, which we may confidently interpret as negative findings that reflect networks of stable regions.

It is important to contrast the interpretation of CT- with SA-based networks. The relationship between CT and SA is complex involving myriad factors including brain hemisphere, brain region, age, IQ, disease, genetics, and many other factors (33, 53). The large size of the human cortex, in comparison to other animals, is driven primarily by expansion of SA, not an increased CT (54), and achieved through gyral folding. Individual differences in cortical volume are largely attributable to variability in surface area as opposed to cortical thickness (55). While CT and SA are highly heritable (r² = 0.81 and 0.80, respectively), the genetic correlation between CT and SA is exceedingly low (r² = 0.08). The influence of environment on CT and SA is also relatively low, accounting for 20% of their variance (56). Findings from structural MRI of 51,865 genotyped individuals show that common genetic variants explain greater phenotypic variance in SA (8 to 31%) than in CT (1 to 13%). Strikingly, 175 unique genetic loci were associated with SA, but only 10 unique loci were associated with CT (57). Understanding the functional roles of
those genetic loci will contribute to interpretation of CT-based and SA-based structural connectivity, which will help us to understand the genetic contribution of remodeling of cortical topography in PTSD. Perhaps identifying common genetic variants that explain CT- and SA-based structural connectivity between regions and within networks will provide insights into the genetic architecture of the structural connectome (10).

Patients with depression alone showed higher mean SC in both CT-based and SA-based atrophic networks, and lower mean SC in SA-based hypertrophic networks, as compared to healthy controls. These results suggest that depression is associated with more coordinated propagation of CT and SA reductions, and less coordinated SA increases. Our result is consistent with previous reports that depression is associated with widely distributed CT reductions (58). Patients with PTSD alone showed lower mean SC in CT-based atrophic networks than patients with depression alone, suggesting that PTSD is associated with more coordinated decline throughout CT-based networks than depression. We also found that PTSD with comorbid depression was associated with lower mean SC in CT-based atrophic networks than depression alone, lower mean SC in SA-based atrophic networks compared to PTSD alone and depression alone, and higher mean SC in SA-based hypertrophic networks relative to depression alone. Previous studies have documented greater volume reductions in cortical structures including anterior/middle cingulate cortex, orbitofrontal cortex, and dorsolateral prefrontal cortex in PTSD with comorbid depression that are absent in either disorder alone (59). Behaviorally, higher levels of distress (60), impaired neurocognitive function (61), and greater risk for suicide (62) are present in comorbid PTSD and depression compared to PTSD alone. PTSD with comorbid depression, relative to either disorder alone, may be associated with larger disruptions of individual cortical regions and their network SC, which may explain greater symptom severity.
We explored the modulation of PTSD-related differences in SCN by sex and age, and modulation of SCNs by PTSD symptom severity. We found that (Supplementary Fig. S1), females with PTSD and males without PTSD had greater SC in CT-based atrophic networks than females without PTSD. Males without PTSD had greater mean SC in CT-based stable networks than males with PTSD and females without PTSD. Diffusion-based structural connectome studies in youth show that males have stronger connections between regions for perception and coordinated action, whereas females have stronger connections between analytical and intuitive processing modes (63), demonstrating the sex-related differences in brain connections. We also found (Supplementary Fig. S2) an inverted U-shaped relationship between age and SC in CT-based atrophic networks that peaked at 20-30 years in non-PTSD and 15-20 years in PTSD, whereas SA-based hypertrophic networks peaked at 10-15 years in both groups. We found significant PTSD-related SC differences in some age groups, particularly < 10 years, as demonstrated by higher SC in CT-based hypertrophic and stable networks, lower SC in CT-based atrophic networks, and lower SC in SA-based hypertrophic networks. Our results suggest that multiple networks undergo transformation in a coordinated fashion to support the development of the brain as well as PTSD symptoms, particularly during early childhood. A previous longitudinal study in healthy young people (9) showed that similar global and nodal topological properties as well as mesoscopic features are shared by SC networks and maturation networks, which are based on each region’s slope of maturation with age and pairwise correlations in the rate of maturation across subjects.

Strengths and Limitations

A major strength of our study is a large cohort of over 3,400 participants that represent diverse geography, demography (sex, age, race), trauma type (military, sexual violence, natural disasters) and clinical comorbidity. This sample heterogeneity enhances the generalizability and
reproducibility of our findings. Harmonization of CT and SA measures sourced from 29 international sites with different MRI scanners was addressed with ComBat (35). A major strength our methodology is empirical confirmation that the most atrophic regions, or most hypertrophic regions, constitute the networks with the greatest change in SC. The possibility that SC might be most affected by PTSD in networks formed of random regions, i.e. where PTSD associated changes of individual regions are completely unremarkable, has been robustly addressed.

The following limitations warrant consideration when interpreting the present results. Firstly, our study is based on cross-sectional data which lacks longitudinal information to inform neurodevelopmental processes. Combining neuroimaging data from multiple longitudinal scans on each subject over several years of follow-up, preferably with pre-trauma and post-trauma observations, may help us to better understand the developmental changes in SC networks among trauma-exposed and PTSD subjects. Secondly, image quality reflected by the Euler number was not significantly different between PTSD and non-PTSD groups in most sites except for Duke University (DeBellis) and INTRUST. Higher image quality is associated with greater CT in dorsolateral prefrontal cortex, superior parietal cortex, and lateral temporal cortex, as well as smaller CT in occipital and posterior cingulate cortex (84). Cortical morphometry and therefore SC may be biased by the PTSD-related differences in image quality at two sites. However, our leave-three-sites-out analyses indicated that our results are reliable. Future studies on cortical morphometry and cortico-cortical SCNs should consider including the image quality as a covariate in statistical models. Finally, information on illness chronicity, developmental timing of trauma, childhood maltreatment, and other comorbidities such as anxiety, were unavailable in the datasets shared with us by our Consortium partners. Future research comparing trauma-exposed individuals without PTSD to trauma-unexposed individuals could offer evidence supporting a hypothetical resilience network. Similarly, differences in
patients with remitted PTSD compared to chronic PTSD could support the existence of a hypothetical recovery network. Future research could also compare patient groups exhibiting specific symptom clusters of PTSD.

Conclusions

Cortico-cortical connections shape the topography of PTSD-related differences in cortical morphometry. Thus, regional cortical morphometry associated with PTSD, does not occur in isolated brain regions and independent of differences seen in other cortical regions. Rather, the regions whose morphometry are most affected by PTSD, albeit not significantly, form networks whose covariance structure is significantly affected by PTSD diagnosis and symptom severity.

This finding fundamentally and significantly extends our understanding about the effects of PTSD on brain structure. Namely, cortical regions must be viewed from a wholistic standpoint as acting within the context of networks that are affected in coordinated manner by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by stress hormones, inflammation, and epigenetics.
Acknowledgments

DoD W81XWH-10-1-0925; Center for Brain and Behavior Research Pilot Grant; South Dakota Governor's Research Center Grant; CX901600 VA CDA; NHMRC Program Grant #1073041; R01 MH111671; VISN5 MIRECC; German Research Foundation grant to J. K. Daniels (DA1222/4-1 and WA 1539/9-2); VA RR&D 1K2RX000706; NIH R01-MH043454; NIH T32-MH018931; SU01AA021681-08; K24MH771434; R24 DA028773, R01 MH63407, R01 AA12479; R01 MH11744; K99NS066116; VA RR&D 1K2RX00325; VA RR&D 1K2RX002922; MH101380; Zom-Mw, the Netherlands organization for Health Research and Development grant to Miranda Off (40-0008-98-10041); Academic Medical Center Research Council grant to Miranda Off (110614); VA CSIR&D 1K2CX001680; VISN17 Center of Excellence pilot funding; NIH R01MH106535; NIH 1R21MH102634; German Federal Ministry of Education and Research (BMBF RELEASE 01KR1303A); German Research Society (Deutsche Forschungsgemeinschaft, DFG; SFB/TRR S8: C26, C27); R01MH11671; R01 MH117601; R01AG0359874; MU0188212; NIH71537; M01RR00039; UL1TR000454; HD071582; HD002583; R21MH112556; Anonymous Women's Health Fund; Kasperian Fund; Trauma Scholars Fund; Barlow Family Fund; W81XWH-08-2-0159; Department of Veterans Affairs via support for the National Center for PTSD; NIAAA via its support for (PSO) Center for the Translational Neuroscience of Alcohol; NCATS via its support of (CTSA) Yale Center for Clinical Investigation; NIH R01 MH106574; F32MH109274; NIH 1R21MH102634; R01MH113574; R01-MH103391; BOF 2-4 year project to Sven C. Mueller (01J05418); R01MH105355; Dana Foundation (to Dr. Nitschke); the University of Wisconsin Institute for Clinical and Translational Research; a National Science Foundation Graduate Research Fellowship (to Dr. Grupe); the National Institute of Mental Health (NIMH) R01 MH83407 (to De Bellis); R01 AA24780 (to De Bellis), and R01 MH81744 (to De Bellis); R01-MH043454 and T32-MH081831 (to Dr. Davidson); core grant to the Waisman Center from the National Institute of Child Health and Human Development (P30-HD003352); NIH K23MH112873; Veterans Affairs Merit Review Program (10/01/08 - 09/01/13); L30 MH114379; German Federal Ministry of Education and Research (BMBF RELEASE 01KR1303A); South African Medical Research Council "SHARED ROOTS" Flagship Project; Grant MRC-RFA-FSP-01-2013/SHARED ROOTS; South African Research Chair in PTSD from the Department of Science and Technology and the National Research Foundation; US Department of Defence Grant W81XWH-08-2-0159 (Pl: Stein, Murray B); VA RR&D 101XR000822; CDMRP W81XWH-08-2-0038; South African Medical Research Council; NARSAD Young Investigator; K01 MH118429; Department of Defense award number W81XWH-12-2-0012; ENIGMA was also supported in part by NIH U54 EB020403 from the Big Data to Knowledge (BD2K) program; R06AG038554; R01MH116147; R01MH111671; R41 EB015822; 1R01MH113453; 1R21 MH898189; R01MH103555-01A. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs, the United States Government, or any other funding sources listed here.
Conflicts of Interest

Dr. Abdallah has served as a consultant, speaker and/or on advisory boards for FSV7, Lundbeck, Pelioebin Labs, Genentech and Janssen, and editor of Chronic Stress for Sage Publications, Inc.; he has filed a patent for using mTOR inhibitors to augment the effects of antidepressants (filed on August 20, 2018). Dr. Davidson is the founder and president of, and serves on the board of directors for, the non-profit organization Healthy Minds Innovations, Inc. Dr. Jahanshad received partial research support from Biogen, Inc. (Boston, USA) for research unrelated to the content of this manuscript. Dr. Krystal is a consultant for AbbVie, Inc., Amgen, Astellas Pharma Global Development, Inc., AstraZeneca Pharmaceuticals, Biomedisyn Corporation, Bristol-Myers Squibb, Eli Lilly and Company, Euthymics Biotecience, Inc., Neurovance, Inc., FORUM Pharmaceuticals, Jansen Research & Development, Lundbeck Research USA, Novartis Pharma AG, Otsuka America Pharmaceutical, Inc., Sage Therapeutics, Inc., Sunovion Pharmaceuticals, Inc., and Takeda Industries; is on the Scientific Advisory Board for Lohocra Research Corporation, Mnemosyne Pharmaceuticals, Inc., Naurex, Inc., and Pfizer; is a stockholder in Biohaven Pharmaceuticals; holds stock options in Mnemosyne Pharmaceuticals, Inc.; holds patents for Dopamine and Noradrenergic Reuptake Inhibitors in Treatment of Schizophrenia, US Patent No. 5,447,948 (issued September 5, 1995), and Glutamate Modulating Agents in the Treatment of Mental Disorders, U.S. Patent No. 8,778,979 (issued July 15, 2014), and filed a patent for Intranasal Administration of Ketamine to Treat Depression: U.S. Application No. 14/157,767 (filed on March 5, 2014); US application or Patent Cooperation Treaty international application No. 14/306,382 (filed on June 17, 2014). Filed a patent for using mTOR inhibitors to augment the effects of antidepressants (filed on August 20, 2018). Dr. Schmahl is consultant for Boehringer Ingelheim International GmbH. Dr. Stein has received research grants and/or consultancy honoraria from Lundbeck and Sun. Dr. Thompson received partial research support from Biogen, Inc. (Boston, USA) for research unrelated to the topic of this manuscript. All other authors report no biomedical financial interests or potential conflicts of interest.
References

Figure Legends

Figure 1. Analyses pipelines. (A) Anatomical neuroimaging data from 29 research sites was aggregated by the ENIGMA PGC PTSD working group. Regional estimates of cortical thickness (CT) and surface area (SA) extracted from 148 cortical regions based on the Destrieux atlas (Destrieux, Fischl, Dale, & Haigren, 2010) were harmonized to remove site effects with ComBat approach and entered into a linear model to adjust for effects of age, age², sex, and whole-brain mean CT (or SA). The residuals were used to compute Pearson correlation coefficients for each pair of cortical regions across subjects within groups. The correlation coefficients were r-to-z transformed to improve normality and yielded a structural covariance (SC) matrix for each participant group. The cortical regions were rank ordered according to the magnitude of effect size when contrasting CT (or SA) between PTSD and non-PTSD groups. The top-n (n = 2 to 148) regions with the largest effect size of differences for PTSD > non-PTSD constituted atrophic networks, PTSD < non-PTSD constituted hypertrophic networks, while the smallest effect size stable networks. The mean SC of a given n-region network measured by the mean of positive correlations between all possible pairs of regions were compared to 5,000 randomly generated n-region networks matched for hemisphere and distance. Both global and individual tests were employed to compute statistical significance based on the proportion of mean SC values from randomly chosen sets of n regions that exceeded or equaled the mean SC of the actual top-n network. As illustrated in (B), the top-n (n = 5, 10, and 20) regions showed (i) the largest effect size in CT (or SA) for PTSD < non-PTSD (atrophic networks); (ii) the largest effect size of PTSD > non-PTSD (hypertrophic networks); or (iii) the smallest effect size of PTSD vs. non-PTSD (stable networks). (C) CT-based hypertrophic networks for top-5, top-10 and top-50 regions.

Figure 2. The top-20 regions showing PTSD-related differences. The top-20 regions that (A) PTSD < non-PTSD and (B) PTSD > non-PTSD in cortical thickness. The top-20 regions that (C)
PTSD < non-PTSD and (D) PTSD > non-PTSD in surface area. Node size represents the magnitude of effect size for between-group differences per region. Warm color denotes PTSD > non-PTSD, and cool color denotes PTSD < non-PTSD. Regions names are listed in

Supplementary Table S4. Two examples are shown on the right to denote the node size and the corresponding effect size (Cohen's d). The directions of the brain maps (axial view) are also shown.

Figure 3. Mean SC of patients with PTSD. Global tests showed that PTSD patients have higher mean SC in both CT- (p < 0.001) and SA-based (p = 0.017) atrophic networks, both CT- (p = 0.029) and SA-based (p = 0.017) hypertrophic networks, and CT-based (p < 0.001) but not SA-based (p > 0.5) stable networks than the corresponding random networks. The curves of networks with up to 50 nodes are shown for illustrative purposes, given that the mean SC of actual networks and the mean SC of the average of random networks were very similar for large network sizes. Red curve, mean SC of the actual networks; Blue curve, mean SC of the average of 5,000 random networks; light blue ribbon, 95% confidence interval (CI) of the 5,000 random networks.

Figure 4. Mean SC of trauma-exposed participants without PTSD. Global tests showed that participants without PTSD had higher mean SC in both CT- (p < 0.001) and SA-based (p < 0.001) atrophic networks, SA-based (p = 0.014) but not CT-based (p = 0.139) hypertrophic networks, and neither CT- (p = 0.264) nor SA-based (p = 0.732) stable networks than in corresponding random networks. The curves for networks with up to 50 nodes are shown for illustrative purpose, given that the mean SC of actual networks and the mean SC of the average of random networks were very similar for large network sizes. Red curve, mean SC of the actual networks; Blue curve, mean SC of the average of 5,000 random networks; light blue ribbon, 95% confidence interval (CI) of the 5,000 random networks.
Figure 5. Mean SC of PTSD vs. non-PTSD. Global tests showed that patients with PTSD versus non-PTSD participants had lower mean SC in both CT- \((p = 0.014)\) and SA-based \((p = 0.024)\) atrophic networks, but no significant difference in CT- \((p = 0.098)\) and SA-based \((p > 0.5)\) hypertrophic networks as well as CT- \((p > 0.5)\) and SA-based \((p > 0.5)\) stable networks. The curves of networks with up to 50 nodes are shown for illustrative purpose, given that the mean SC of actual networks and the mean SC of the average of random networks were very similar for large network sizes. Red curve, mean SC of the actual networks; Blue curve, mean SC of the average of 5,000 random networks; light blue ribbon, 95% confidence interval (CI) of the 5,000 random networks.

Figure 6. Replication analyses results. The global-tests results shown in Figures 3, 4, and 5 are reliable as underscored by the area under curve (AUC) of mean SC for the results based on all 29 sites (represented by the red vertical line) was always located within the 95% confidence interval (represented by two blue vertical dashed lines) of the AUC of mean SC from 5,000 iterations leaving out 3 sites at each iteration across all types of networks.

Figure 7. Interaction effects of PTSD and depression. Global tests showed that patients with depression alone had higher mean SC in (A) CT-based \((p < 0.001)\) and (B) SA-based \((p < 0.001)\) atrophic networks, and lower mean SC in (D) SA-based hypertrophic networks \((p = 0.029)\), than patients with both PTSD and depression. Patients with depression alone also showed higher mean SC in both (A) CT-based \((p < 0.001)\) and (B) SA-based \((p < 0.001)\) atrophic networks, and lower mean SC in (D) SA-based hypertrophic networks \((p < 0.001)\), than patients with neither PTSD nor depression. Patients with PTSD alone showed lower mean SC in (A) CT-based atrophic networks than patients with depression alone \((p < 0.001)\), and higher mean SC in (B) SA-based atrophic networks than patients with both PTSD and depression \((p < 0.001)\) as well as participants with neither PTSD nor depression \((p = 0.014)\). No significant PTSD x depression interaction effect (global \(p\)-values > 0.2) was found in the other types of
networks shown in (C), (E) and (F). The curves of networks with up to 30 nodes were shown for illustrative purposes. Error bar denotes 95% confidence interval of 5,000 random networks. * represents $p < 0.05$; ** represents $p < 0.001$.

Table 1. Demographic and clinical information per site.

<table>
<thead>
<tr>
<th>Site</th>
<th>CT</th>
<th>SA</th>
<th>Male/Female</th>
<th>PTSD/Non-PTSD</th>
<th>Age (years)</th>
<th>Trauma</th>
<th>MDD (%)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADNIDOD</td>
<td>144</td>
<td>184</td>
<td>153/91</td>
<td>80/166</td>
<td>59.0±5.5</td>
<td>Y</td>
<td>2.5</td>
<td>Military</td>
</tr>
<tr>
<td>Boedeker (AMC)</td>
<td>75</td>
<td>75</td>
<td>40/35</td>
<td>38/37</td>
<td>40.0±10.0</td>
<td>Y</td>
<td>31</td>
<td>Police</td>
</tr>
<tr>
<td>Columbia</td>
<td>68</td>
<td>86</td>
<td>51/35</td>
<td>53/35</td>
<td>39.0±8.8</td>
<td>Y</td>
<td>24</td>
<td>Civilian</td>
</tr>
<tr>
<td>Duke University (DeBella)</td>
<td>115</td>
<td>177</td>
<td>53/62</td>
<td>26/86</td>
<td>10.9±2.4</td>
<td>Y/N</td>
<td>N/A</td>
<td>Civilian</td>
</tr>
<tr>
<td>Minneapolis VA Medical Center</td>
<td>169</td>
<td>171</td>
<td>163/48</td>
<td>74/95</td>
<td>33.0±7.9</td>
<td>Y</td>
<td>28.4</td>
<td>Military</td>
</tr>
<tr>
<td>Duke University</td>
<td>385</td>
<td>385</td>
<td>310/75</td>
<td>114/217</td>
<td>40.0±10.0</td>
<td>Y</td>
<td>40.3</td>
<td>Both</td>
</tr>
<tr>
<td>Durham VA</td>
<td>87</td>
<td>67</td>
<td>56/25</td>
<td>83/39</td>
<td>37.0±12.0</td>
<td>N</td>
<td>48.3</td>
<td>Civilian</td>
</tr>
<tr>
<td>Groningen (Charité University)</td>
<td>43</td>
<td>40</td>
<td>30/10</td>
<td>40/60</td>
<td>35.0±10.0</td>
<td>Y</td>
<td>67.5</td>
<td>Civilian</td>
</tr>
<tr>
<td>University of Wisconsin (Groupe)</td>
<td>57</td>
<td>58</td>
<td>53/4</td>
<td>18/38</td>
<td>31.9±4.0</td>
<td>Y</td>
<td>100</td>
<td>Military</td>
</tr>
<tr>
<td>Emory GTP</td>
<td>174</td>
<td>174</td>
<td>94/80</td>
<td>63/116</td>
<td>36.0±13.0</td>
<td>Y</td>
<td>51.7</td>
<td>Civilian</td>
</tr>
<tr>
<td>INTRUST</td>
<td>97</td>
<td>117</td>
<td>72/45</td>
<td>25/72</td>
<td>35.0±14.0</td>
<td>Y</td>
<td>21.7</td>
<td>Both</td>
</tr>
<tr>
<td>University of Wisconsin (Larson)</td>
<td>97</td>
<td>67</td>
<td>63/34</td>
<td>26/41</td>
<td>33.0±11.0</td>
<td>Y</td>
<td>0.0</td>
<td>Civilian</td>
</tr>
<tr>
<td>Leiden</td>
<td>52</td>
<td>52</td>
<td>7/45</td>
<td>22/30</td>
<td>15.2±2.6</td>
<td>N</td>
<td>19.2</td>
<td>Civilian</td>
</tr>
<tr>
<td>Mannheim</td>
<td>48</td>
<td>48</td>
<td>0/48</td>
<td>48/0</td>
<td>36.0±12.0</td>
<td>Y</td>
<td>97.9</td>
<td>Civilian</td>
</tr>
<tr>
<td>McLean (Rossi)</td>
<td>52</td>
<td>52</td>
<td>0/52</td>
<td>52/0</td>
<td>36.0±12.0</td>
<td>Y</td>
<td>75</td>
<td>Civilian</td>
</tr>
<tr>
<td>Muenster</td>
<td>45</td>
<td>47</td>
<td>5/42</td>
<td>21/26</td>
<td>27.0±7.0</td>
<td>Y</td>
<td>34</td>
<td>Civilian</td>
</tr>
<tr>
<td>Phan</td>
<td>43</td>
<td>43</td>
<td>4/30</td>
<td>23/20</td>
<td>32.0±8.6</td>
<td>Y</td>
<td>33.5</td>
<td>Military</td>
</tr>
<tr>
<td>McLean (Rossi)</td>
<td>106</td>
<td>97</td>
<td>46/50</td>
<td>21/85</td>
<td>34.0±6.0</td>
<td>Y</td>
<td>23</td>
<td>Civilian</td>
</tr>
<tr>
<td>University of Toledo</td>
<td>76</td>
<td>70</td>
<td>42/24</td>
<td>16/51</td>
<td>35.0±11.3</td>
<td>Y</td>
<td>41</td>
<td>Both</td>
</tr>
<tr>
<td>UCAS</td>
<td>70</td>
<td>70</td>
<td>32/38</td>
<td>34/36</td>
<td>50.0±7.0</td>
<td>Y</td>
<td>64.3</td>
<td>Civilian</td>
</tr>
<tr>
<td>Cape Town</td>
<td>62</td>
<td>63</td>
<td>0/62</td>
<td>75/0</td>
<td>29.0±5.0</td>
<td>Y</td>
<td>50</td>
<td>Civilian</td>
</tr>
<tr>
<td>University of Washington</td>
<td>255</td>
<td>255</td>
<td>125/130</td>
<td>59/262</td>
<td>14.0±3.1</td>
<td>Y</td>
<td>15.3</td>
<td>Civilian</td>
</tr>
<tr>
<td>Waco VA</td>
<td>86</td>
<td>96</td>
<td>36/10</td>
<td>41/25</td>
<td>41.0±11.1</td>
<td>N</td>
<td>67</td>
<td>Military</td>
</tr>
<tr>
<td>West/Heaven VA</td>
<td>72</td>
<td>72</td>
<td>63/8</td>
<td>34/39</td>
<td>35.0±10.0</td>
<td>Y</td>
<td>75</td>
<td>Military</td>
</tr>
<tr>
<td>Yale</td>
<td>70</td>
<td>70</td>
<td>50/21</td>
<td>22/49</td>
<td>29.0±11.2</td>
<td>Y</td>
<td>0</td>
<td>Civilian</td>
</tr>
</tbody>
</table>
Table 2. Area under the curve (AUC) of mean SC for the actual network and the average of 5,000 random networks.

<table>
<thead>
<tr>
<th>Network Type</th>
<th>CT-based networks</th>
<th>SA-based networks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Act.</td>
<td>Rand.</td>
</tr>
<tr>
<td>Atrophic</td>
<td>12.106</td>
<td>9.018, 12.872</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>12.104</td>
<td>9.356, 8.692</td>
</tr>
<tr>
<td>Stable</td>
<td>12.153</td>
<td>9.356, 8.692</td>
</tr>
<tr>
<td>Atrophic</td>
<td>12.106</td>
<td>9.018, 12.872</td>
</tr>
<tr>
<td>Hypertrophic</td>
<td>12.104</td>
<td>9.356, 8.692</td>
</tr>
<tr>
<td>Stable</td>
<td>12.106</td>
<td>9.018, 12.872</td>
</tr>
</tbody>
</table>

Note: Act. = mean SC of the actual network; Rand. = average of the mean SC of 5,000 random networks; 95 CI = 95% confidence interval of the mean SC of 5,000 random networks; Global p = global p value (Bonferroni corrected) for the actual-versus-random comparison. * p < 0.05; ** p < 0.01; *** p < 0.001.
ENIGMA-PGC PTSD (from 29 cohorts) → CT & SA Extraction (from 148 cortical regions based on Destrieux atlas)

- **Combat** removes site effect.
- **Residuals** obtained after regressing out confounds: age, age², sex, & mean CT (or SA)

Structural Covariance Matrix
- Pearson correlation coeff.
- R-to-z transformation.

Ranked orders for PTSD-related CT (or SA) Difference

Atrophic, hypertrophic, stable networks

Top-\(n\) Regions vs. Random Regions
- Mean SC of each set of regions.
- 5,000 random sets of \(N\) regions matched in hemisphere & distance.

Statistical Significance
- Global & individual \(p\)-values.

PTSD vs. non-PTSD

Atrophic Networks
Stable Networks
Hypertrophic Networks

Top-3
Top-10
Top-50
The image contains a series of bar charts comparing AUC (Area Under the Curve) results for PTSD and Non-PTSD patients across different categories: Atrophic, Hypertrophic, and Stable. The charts are divided into two sections: CT-based and SA-based. Each category shows the distribution of AUC values with a red line indicating the AUC of All-Sites Results and a dashed line representing the 95% CI of Leave-3-Sites-Out Results.