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Abstract 
 
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of 
peak growth and plasticity in which differences believed to be associated with many 
neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding 
about the developmental patterns of the cortical gray matter microstructure is necessary to 
characterize differential patterns of neurodevelopment that may subserve future intellectual, 
behavioral, and psychiatric challenges. The NODDI Gray-Matter Based Spatial Statistics 
(GBSS) framework leverages information from the neurite orientation and dispersion density 
imaging (NODDI) model to enable sensitive characterization of the gray matter microstructure 
while limiting partial volume contamination and misregistration issues between images collected 
in different spaces. However, limited contrast of the underdeveloped brain poses challenges for 
implementing the NODDI-GBSS framework with infant diffusion MRI (dMRI) data. In this work, 
we examine infant cortical microstructure using GBSS and propose several refinements to the 
original framework that aim to improve the delineation and characterization of gray matter in the 
infant brain. Taking this approach, we cross-sectionally investigate age relationships in the 
developing gray matter microstructural organization in infants within the first month of life and 
reveal widespread relationships with the gray matter architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 

From early fetal stages to the first years of life, the brain undergoes immense morphological 
change that shapes its underlying structural and functional framework1-4, providing the 
foundation for the development of future cognition and behavioral skills5, 6. This developmental 
period of peak growth and neural plasticity encompasses a vulnerable window in which 
neurodevelopmental alterations believed to be associated with many neurodevelopmental and 
psychiatric disorders first emerge7-14. In particular, gray matter structures and associated 
cytoarchitecture help govern key neuronal processes supporting motor abilities, sensory 
integration, and cognitive functioning15-17 and are believed to play a critical role in various 
developmental conditions18-22. Therefore, understanding the early patterns of the brain’s cortical 
development and organization is important to characterize normative development and detect 
diverging patterns of neurodevelopment that may be central to future intellectual, behavioral, 
and psychiatric challenges.  

Quantitative magnetic resonance imaging (MRI) techniques such as diffusion MRI (dMRI) allow 
for in vivo characterization of the microstructural organization of the brain. dMRI probes tissue 
microstructure by quantitatively describing the random motion of water molecules in restricted 
tissue environments23, 24. Diffusion tensor imaging (DTI) is the most widely used dMRI 
technique, enabling quantitative estimation of the brain’s microstructure through four scalar 
indices: fractional anisotropy (FA), and mean (MD), radial (RD), and axial (AD) diffusivity. DTI 
metrics have been widely utilized in studies of neonatal white matter maturation25-30, however, 
DTI studies of infant gray matter have been largely limited and mostly studied in premature 
infants31-34. Moreover, several limitations of the DTI model make it difficult to analyze and 
interpret DTI metrics in gray matter, including the assumption of a Gaussian diffusion 
distribution within the complex microstructure of the cortical gray matter35 and bias from partial 
volume effects of the CSF36. As such, considerable efforts toward developing alternative dMRI 
signal models have been made37, 38 including the development of biophysical models such as 
the neurite orientation and dispersion density imaging (NODDI)39 model. Such models aim to 
improve the interpretation of the acquired dMRI signal and quantify characteristics of the brain’s 
microstructure with enhanced biological specificity compared to traditional methods. NODDI 
metrics provide a quantitative estimation of neurite and axonal densities (FICVF), describe the 
extent of orientational dispersion of axonal projections (ODI), and estimate the fraction of free 
water CSF within a voxel (fISO)39.  
 
As early neurodevelopmental processes of the cortex including synaptogenesis, axon growth, 
and synaptic pruning, begin to lay the foundation for the brain’s neural circuitry and shape the 
functional architecture of the brain5, it is critical to characterize the morphology of the emerging 
cytoarchitecture and define the developmental timing of these cortical processes. Despite the 
importance of understanding this microstructural development, few studies have applied 
advanced dMRI methods to assess cortical microstructural changes occurring in early brain 
development. This gap in literature is due to both challenges posed by incomplete white matter 
myelination and poor gray-white matter contrast in the underdeveloped brain40-42 as well as the 
inherent difficulties of scanning infants and young children43-46.  
 
NODDI metrics have been used in studies of early brain development to describe the 
organization of both white and gray matter regions47-53 showing widespread non-linear increases 
in FICVF54-56 and ODI56 across development. Nevertheless, much of this extant work focuses on 
infants born pre-term and utilizes region-of-interest-based approaches that do not adequately 
account for regional developmental variations across the whole brain. For a comprehensive 



review of applications of advanced dMRI in studies of brain development, see DiPiero et al. 
202222. 

NODDI - Gray matter based spatial statistics (GBSS)57 is a recent framework that utilizes 
information gleaned from the NODDI model to perform statistical analysis across a skeletonized 
representation of the gray matter microstructure, analogous to the white matter tract based 
spatial statistics approach58. Methods described in Nazeri et al., 2017 allow for partial volume 
estimation maps of each tissue class to be derived within the native diffusion space, reducing 
the effects of partial volume contamination and improving sensitivity 57. The GBSS framework 
has been used in conjunction with NODDI in studies of autism18, 59, schizophrenia and bipolar 
disorder 57, and mild cognitive impairment and Alzheimer’s Disease60. However, a key step of 
the GBSS framework involves the segmentation of the brain’s tissue types, which can be 
challenging in the developing brain due to reduced tissue contrast and rapid development 
during the first years of life. Hence, the framework proposed by Nazeri et al., may not be directly 
adopted to studies in the infant brain. Three previous studies have utilized a GBSS approach to 
assess cortical microstructure in the infant brain33, 34, 61, provide valuable insight into infant 
cortical microstructure, and demonstrate the utility of GBSS in the developing brain. However, 
these studies leverage anatomical images for tissue segmentation and spatial normalization 
and, therefore, require accurate registration between the anatomical and dMRI images.  

The aim of the current work was to refine the NODDI - GBSS framework proposed by Nazeri et 
al. for the 1-month brain while only leveraging information from diffusion-weighted imaging data 
for processing and analysis. Taking this approach, we quantify DTI and NODDI measures 
across the cortical gray matter and assess associations of these measures with gestation 
corrected age. Although sex differences in white matter microstructure are minimally detected in 
neonates47, 62, 63, we assessed potential sex differences in gray matter organization. Following 
previous literature of full-term infants in the first month of life, we anticipate that the organization 
of the gray matter will increase with age across much of the cortex and will not show differences 
between male and female infants in this early developmental period. We believe this infant 
optimized GBSS framework will enable improved dMRI measurements and characterization of 
the developing cortical microstructure and forge opportunities for large-scale investigations of 
the gray matter microstructure across the lifespan. 

Methods  
Participants 
Recruitment for this study was conducted as part of a longitudinal study conducted at the 
University of Wisconsin–Madison investigating the brain and emotion development over the first 
two years of life. Extensive inclusion and exclusion criteria are described elsewhere47, 51-53, 64-66. 
Briefly, 149 pregnant women were enrolled during the second trimester of pregnancy (<28 
weeks’ gestation). Inclusion criteria required mothers to be between 18 and 40 years of age, 
expecting a singleton birth, have no of previous diagnosis of major psychiatric conditions or 
major head trauma, no pre-existing neurological conditions, autoimmune disorders or infections 
during pregnancy, and had an uncomplicated childbirth. Infants were excluded postnatally if 
they were admitted into the neonatal intensive care unit (NICU) for medical care and/or if the 
infant was not discharged with the mother. All inclusionary criteria were confirmed with mothers 
prior to enrollment and were confirmed by study team via medical history questionnaires across 
the longitudinal study visits.  
 
The current study utilizes dMRI from 91 infants (48 female; 43 male) scanned in the first month 
of life (Mean = 32.86 days, corrected for gestational age). Additional demographic information 



can be found in Table 1. Parental consent was obtained from each participating family upon 
enrollment. All study procedures were approved by the Institutional Review Board at the 
University of Wisconsin – Madison. 
 
 
 

 
** PMA (weeks) = (Gestational days + Chronological Age) 
         7  
 
 
MRI Data Acquisition 
 
MRI visits were scheduled to align with infant's sleep schedule. Upon arrival, infants were fed 
and swaddled, and data were acquired during natural non-sedated sleep45, 46. After infants were 
asleep, they were fit with ear protection, including ear plugs, MiniMuff® (Natus Medical 
Incorporated) neonatal noise attenuating ear covers, and white noise played through 
electrodynamic headphones (MR Confon, Germany) to limit the acoustic noise of the scan. To 
further limit the acoustic sound during the MRI and increase the likelihood of the infant 
remaining asleep, an acoustically optimized imaging protocol was designed that limited the peak 
gradient slew rates of the MRI pulse sequences to approximately 67% of their nominal value.  
 
MRI data were acquired on a 3 Tesla General Electric MR750 Discovery scanner using a 
32 channel receive-only head RF array coil (Nova Medical, Wakefield, MA). A three-shell 
diffusion weighted imaging (DWI) protocol was acquired using a single shot spin-echo echo-
planar imaging pulse sequence. Parallel acquisition with a geometric reduction factor of two was 
used to reduce image acquisition time and distortions from magnetic field inhomogeneities. A 
total of 69 DWIs were acquired, 6 directions acquired with no diffusion weighting (b = 0 s/mm2), 
and diffusion weighting of b = 350 s/mm2 in 9 directions, b = 800 s/mm2 in 18 directions, and b = 
1500 s/mm2 in 36 directions. Other DWI acquisition parameters included a repetition time [TR] = 
8400 ms; echo time [TE] = 94 ms; and bandwidth = 3906 Hz/pixel; field of view [FOV] of 25.6 
cm × 25.6 cm and an acquisition matrix of 128 × 128, providing a 2mm × 2mm in-plane 
resolution. Coverage across the cerebrum and cerebellum was achieved by acquiring 60 

 
Table 1. Participant Demographics 

Sample Demographics  
N 91 
Sex (F; M) 48:43 
Infant Age at Scan (Gestation Corrected Days); 
Mean (SD) [Range] 

32.86 (6.08) [18-50] 

Infant Age at Scan (Post Menstrual Age (PMA) (weeks));  
Mean (SD) [Range] 

44.7 (0.86) [42.5 – 47.5] 

Mother Age at Birth; Mean (SD) [Range] 32.92 (3.78) [20.12-41.06] 
Infant Race  
White 82 
Black 1 
Asian 5 
Native American 2 
Missing/Not Reported 1 



sagittal-oriented contiguous slices with a slice thickness of 2.0 mm. The total time for the 
multiple b-value DTI acquisition using strategies to reduce the acoustic noise was approximately 
10 minutes.  
 
Structural T1- and T2-weighted images were obtained using GE’s 3D BRAVO (BRAin VOlume) 
and CUBE imaging pulse sequences, respectively. Images were acquired in a sagittal 
orientation with a 1.0 mm isotropic spatial resolution. Additional BRAVO imaging parameters 
included: TR = 8.7 ms; TE = 3.4 ms; inversion time (TI) = 450 ms; flip angle = 12 degrees; FOV 
= 25.6 cm × 25.6 cm × 17.0 cm; and an acquisition time of 8 minutes 10 seconds. CUBE 
imaging parameters were: TR = 2500 ms; FOV = 25.6 cm × 25.6 cm × 16.0 cm; echo train 
length = 65; and an acquisition time of 5 minutes and 36 seconds. 
 
Image Processing  
All DWI and structural T1- and T2- weighted images were manually assessed for motion and 
other image artifacts and confirmed by a trained researcher (MD). DWI volumes containing 
motion artifacts were manually removed prior to processing. Data processing was conducted 
with an in-house processing pipeline. Briefly, DWIs were denoised67 and corrected for Gibbs 
ringing artifact68 using tools from MRtrix367. Eddy current and motion correction was performed 
using FSL’s eddy tool69-72, while gradient directions were further corrected for rotations73. Non-
parenchyma signal was removed using the hd-bet74. DWIs were then up-sampled to 1mm3 
isotropic resolution and linearly co-registered to the individuals’ T2-weighted image using 
ANTs75. Diffusion tensors were estimated at each voxel from the final pre-processed DWI image 
using a weighted-least squares algorithm using the Diffusion Imaging in Python (DIPY) package 
76. DTI metrics77, 78 including fractional anisotropy, and mean, radial, and axial diffusivities, (FA, 
MD, RD, AD) were computed. DWIs were also fit to the multi-compartment NODDI tissue 
model39 with a Watson distribution using DMIPY79 to estimate NODDI metrics of intracellular 
volume fraction (FICVF) or neurite density, orientation dispersion index (ODI), and isotropic 
volume fraction (FISO).  
 
Adapting the GBSS Framework for Infants 
NODDI-GBSS adopts the tract-based spatial statistics (TBSS)58 framework to allow for analysis 
of diffusion MRI measures in the cortical gray matter. Processing steps for GBSS have been 
previously described57, 80. Briefly, the GBSS framework leverages the gray-white matter contrast 
of a DTI FA map for two-tissue type segmentation and estimation of the white matter fraction 
using Atropos81. A gray matter fraction map is then estimated by subtracting the white matter 
fraction and CSF fraction (NODDI FISO parameter) maps from 1. Gray matter fraction maps are 
then aligned to a study-specific template and averaged to create a representative gray matter 
fraction map. This map is then is skeletonized using the tbss_skeleton tool in FSL58, 82 and 
thresholded to include only voxels with an average gray matter fraction >0.6557 (Figure 1A). 
NODDI and DTI metrics are projected onto the gray matter skeleton from local voxels with the 
greatest gray matter fraction. 
 
The underdeveloped infant brain poses several challenges for the direct application of the 
NODDI-GBSS framework to infant dMRI data. For example, the FA contrast in infants is not 
sufficient for accurate gray and white matter segmentation and can result in erroneous 
estimates of the white matter fraction and, subsequently, the gray matter fraction (Figure 1B). 
This erroneous gray matter fraction estimation with the adult method causes further issues with 
the skeletonization of the gray matter as seen in Figure 2B.  
 
To combat the suboptimal segmentation of the infant FA map, we propose using the NODDI 
ODI map for the two-tissue class segmentation and white matter fraction estimation due to its 



improved gray-white matter contrast in the underdeveloped brain (Figure 1C). The gray matter 
fraction map was then estimated by subtracting the white matter fraction and CSF fraction 
(NODDI FISO parameter) maps from 1. Gray matter fraction maps are then aligned to a study-
specific template, averaged to create a mean gray matter fraction map, and skeletonized using 
the tbss_skeleton tool in FSL58, 82. However, due to the reduced gray matter fraction values in 
the 1-month brain, an adjusted gray matter fraction threshold of 0.45 was used to construct the 
infant gray matter skeleton (Figure 2C), which was used in subsequent statistical analyses. 
NODDI and DTI metrics were projected onto the gray matter skeleton from local voxels with the 
greatest gray matter fraction. To compare GM skeletonization methods performed in the infant 
brain, we examined the degree to which the two methods agreed with one another by 
calculating the percent agreement by dividing the number of agreeing (overlapping) voxels 
between methods by the total number of voxels in the infant skeleton.  
 

 



Figure 1. The GBSS Processing Steps Adapted to The Infant Brain. A. GBSS conducted 
in adults. For each subject, a white matter fraction map is estimated via Atropos from the DTI 
FA map. A gray matter fraction map is then generated by subtracting the white matter fraction 
and the CSF fraction (NODDI fISO) from 1. A mean gray matter fraction map is generated by 
averaging the gray matter fraction maps for each participant and is skeletonized. The dMRI 
parameter maps (from DTI and NODDI) are then projected onto the GM skeleton from the local 
gray matter fraction maxima. The final skeleton was generated by keeping only voxels with a 
GM fraction > 0.65 in > 75% of the subjects. B. The adult optimized GBSS method applied 
directly to infants without modification. The FA map was used to derive the white matter 
fraction estimate. The final skeleton was generated by keeping only voxels with a gray matter 
fraction > 0.65 in > 75% of the subjects leads to inaccuracies in gray matter fraction estimation 
and poor skeleton generation. C. Modification of the GBSS framework for the infant brain. 
For each subject, the NODDI ODI map was fed into Atropos for white matter fraction estimation. 
The final skeleton was generated by keeping only voxels with a gray matter fraction > 0.45 in > 
75% of the subjects leads an improvement in gray matter fraction estimation and skeleton 
generation compared to the adult method in infants. 

Statistical Analyses 
 
Relationships with Age and Cortical Microstructure 

FSL was used to build General Linear Models (GLMs) to investigate age relationships across 
the cortical microstructure. Infant age at scan was corrected for gestational age. Models 
controlled for infant sex. Covariates in all analyses were centered. Non-parametric permutation 
testing with tail approximation (n = 500) was carried out using Permutation Analysis of Linear 
Models (PALM) 58, 83. Tail approximation was used to fit the tail of the permutation distribution to 
a generalized Pareto distribution84 and reduce the overall total number of permutations 
necessary to estimate p-values. A multivariate analysis was run for all gray matter metrics 
(FICVF, ODI, FA, MD, RD, AD). Joint inference of age was assessed with the non-parametric 
combination (NPC) and Fisher’s combining function across five dMRI metrics: FICVF, FA, MD, 
AD, and RD, while differences in individual metrics were also evaluated. Threshold free cluster 
enhancement (TFCE) 85 was used to identify significant regions at p < 0.05, FWER-corrected 
across modality and contrast. Statistical maps were overlaid on the Harvard-Oxford cortical 
atlas86 to identify regions with a significant age relationship. 

Age by Sex Interactions on Cortical Microstructure 
Age by sex interaction GLMs were also generated to separately examine sex related differences 
in the relationship between age and cortical organization. GLMs included mean-centered infant 
age (gestation corrected) and sex in addition to the interaction term. Non-parametric 
permutation testing with tail approximation (n = 500) was carried out using Permutation Analysis 
of Linear Models (PALM) 58, 83. Tail approximation was used to fit the tail of the permutation 
distribution to a generalized Pareto distribution84 and reduce the overall total number of 
permutations necessary to estimate p-values. A multivariate analysis was run for all gray matter 
metrics (FICVF, ODI, FA, MD, RD, AD). Joint inference of age was assessed with the non-
parametric combination (NPC) and Fisher’s combining function across five dMRI metrics: 
FICVF, FA, MD, AD and RD, while differences in individual metrics were also evaluated. 
Threshold free cluster enhancement (TFCE) 85 was used to identify significant regions at p < 
0.05, FWER-corrected across modality and contrast. 
 
 



Results 
 
GBSS Skeleton Construction for the Infant Brain  
 
We show improved skeletonization of the gray matter microstructure in the infant brain with our 
adapted GBSS framework. Our modifications to the GBSS framework, including utilization of the 
NODDI ODI map for improved gray matter fraction estimate and adjusted threshold for 
generation of the gray matter skeleton (Figure 1C) contribute to an improved gray matter 
skeleton for infants (Figure 2C). When applying the GBSS framework directly to infants without 
these modifications, the resulting GM skeleton is centered at the gray-white matter boundary 
rather than within the cortical gray matter (Figure 2B). Moreover, we observe that erroneous 
segmentation of the DTI FA map results in inaccurate delination of gray and white matter 
around the brain’s edges (Figure 2B). The GBSS skeleton constructed via our infant adapted 
framework provides a more robust estimate of the gray matter fraction (Figure 2C) and 
generates a skeleton that is more specific to gray matter compared to the GBSS framework 
without modifications (Figure 2B). Further, the gray matter skeletons generated from both 
methods overlaid on one another highlight discrete regions of the brain (Figure 2D) with very 
few overlapping voxels in the cortex (Figure 3). Between the two GBSS approaches, only a 
9.7% agreement was found between skeletonized voxels. 

 

Figure 2: GBSS skeleton construction and improvement for infant brain. A. GBSS method 
applied to adult brain. B. GBSS method applied to infants without modification. C. Improved 
infant GBSS skeleton with adapted method. D. Adult GBSS method applied to infants without 
modification and infant GBSS method overlaid on top of one another. 
 



 
Figure 3. GBSS Skeleton Agreement Between Adult and Infant Methods. Yellow voxels 
represent voxels identified as gray matter across both the adult (Red) and infant (Green) 
methods. 
 
Associations Between Cortical Microstructure and Age and Sex 
 
A significant main effect of sex was not detected with cortical microstructure, however, age 
analyses controlled for the effects of sex. Significant voxelwise relationships with age and gray 
matter microstructure were observed in measures of FICVF, MD, RD, and AD (p<0.05, FWER-
corrected) (Figure 3). FICVF was observed to increase with age, whereas MD, RD and AD 
decreased with age. A summary of regional brain regions observed to have significant age 
relationships can be found in Table 2. Across significant dMRI metrics, age associations were 
observed in the cuneal cortex, lateral occipital cortex, occipital pole, paracingulate gyrus, 
cingulate gyrus, and the superior frontal gyrus. Across measures of FICVF, MD, and RD, 
significant age associations were also noted in the following regions: Angular gyrus, central 
opercular gyrus, inferior frontal gyrus, supplemental motor cortex, frontal pole, middle frontal 
gyrus, post central gyrus, precentral gyrus, supramarginal gyrus, and inferior temporal gyrus. 
While a majority of age relationships were found in bilateral hemispheres for FICVF, the majority 
of significant age relationships with the DTI metrics of MD and RD were found in the right 
hemisphere. Significant relationships between age and ODI were not detected across the 
cortical skeleton. 
 
Across dMRI measures, we did not detect a significant main effect of sex or age-by-sex 
interactions in the cortical microstructure.  
 
 
 



 
Figure 4. Age relationships in Cortical Microstructure. Neuroanatomical maps show regions with 
a significant age relationship. Color indicates level of significance. Red/Yellow scale indicates a 
significant positive relationship. Blue/Green scale indicates a significant negative relationship. 
Scatter points represent the average dMRI measure across significant voxels for each measure. 
 
 
Discussion 
 
The early organization of the cortical gray matter plays a critical role in the formation of the 
neural circuitry that is foundational for future behavioral health and well-being. Despite the 
importance of this early organization, limited work has applied advanced dMRI methods to 
investigate the highly complex and rapidly changing architecture of neurites in the cortex.  This 
study employs GBSS57 for characterizing the cortical microstructure and proposes several 
refinements to the original framework that aim to improve the delineation and characterization of 
gray matter in the infant brain. DTI and NODDI based measures of cortical microstructure were 
measured in the cortical gray matter and varied across much of the cortex, signaling rapid 
development and organization within the first month of life. These results complement the extant 
literature on the development of cortical microstructure and provide new insights into the 
neonatal brain.  
 
Studies utilizing NODDI to examine the cortical organization of infants at 37 to 44 weeks post-
menstrual age (PMA) show FICVF and ODI measured in the gray matter to increase with age56, 

61, 87, potentially capturing gray matter processes of dendritic arborization, glial proliferation, and 
synapse formation. Other work including older infants suggests a developmental plateau in gray 
matter organization around 38 weeks PMA54, 88. For example, in a whole-brain gray matter 
analysis of preterm infants scanned between 25 and 47 weeks PMA, Batalle et al. reported a 
developmental plateau in ODI accompanied by an increase in FICVF after 38 PMW54, 
suggesting the completion of basal dendritic branching and ongoing apical branching at this 
developmental stage 54, 89. However, dynamic cytoarchitectural changes continue into the 
neonatal period and within the first weeks of life including processes of neuronal aggregation in 
the formation of neural circuitry expanding both tangentially and radially90. These 



cytoarchitectural events may explain increases in FICVF and ODI in the gray matter of infants 
scanned between 37- and 44-weeks PMA 56, 61. In line with findings from Batalle et al., 201954, 
our observations of a rise in neurite density with age without a corresponding increase in 
dispersion may be attributed to ongoing apical dendritic development of pyramidal neurons at 
term-age90-92. 
 
Across the infant-modified GBSS skeleton, we detected significant relationships with age and 
gray matter microstructure measures of FICVF, MD, RD, and AD in brain regions including the 
cuneal cortex, lateral occipital cortex, occipital pole, paracingulate gyrus, cingulate gyrus, and 
the superior frontal gyrus. Within these regions, neurite density was positively associated with 
age, whereas the diffusivity metrics were negatively related to infant age. While the cuneal 
cortex, lateral occipital cortex, and occipital pole are located in the occipital lobe and play a 
major role in visual processes including interpreting visual stimuli93, the paracingulate gyrus, 
cingulate gyrus, and the superior frontal gyrus are involved in cognitive and emotional 
processing94, 95.  
 
Early postnatal visual experiences influence the structural and functional maturation of the infant 
visual system96. Our observation of microstructural development denoted by increased neurite 
density and decreased diffusivity metrics in these brain areas follows the expected 
developmental time course. Moreover, these neurite density changes complement findings from 
Batalle et al., 201954 in increased neurite density visual brain areas after 38 weeks PMA and is 
further supported by post-mortem histology findings of increased branching and spine densities 
at 1 month of age97. Additional studies are needed to specifically link developing cortical 
microstructure to histology across developmental epochs. 

The development of cognitive and emotional brain areas begins in infancy, with studies linking 
infant white matter microstructure of tracts supporting cognitive and emotional processes with 
future attentional51 and fear65 behaviors. Neurite density of infant white matter tracts in frontal 
brain areas has also been shown to increase with age47, 98. However, less work has specifically 
investigated these relationships in gray matter. Dimitrova et al., 2021 reported positive 
associations in FICVF with age in some regions of the frontal lobe of term-born neonates 
scanned between 37- and 44-weeks PMA56. This work supports our findings of increased 
neurite density in the superior frontal gyrus and limbic brain structures. While other work also 
observed increased neurite density in the insula in infancy56, 61, these studies included younger 
infants than represented in our sample which may account for the lack of findings in this region 
within our cohort. 

Occurring in tandem with development in cognitive and emotional brain areas is the ongoing 
development of auditory and language centers. The development of hearing begins at the onset 
of the third trimester of pregancy99. Studies have shown that within the first postnatal months of 
life, infants already possess the ability to distinguish between different phonemes100, 101. 
Moreover, studies have linked infant brain structure to later language abilities102, 103, reporting 
relationships between subcortical gray matter densities and volumes and later language skills. 
The current work supports the early emergence of this protracted developmental process, with 
findings of increased neurite density and decreased mean and radial diffusivities observed 
within brain regions supporting phonetic and semantic language processes, including the middle 
frontal gyrus, inferior frontal gyrus, supramarginal gyrus, and angular gyrus.  

In addition to language areas, we also observed an increase in structural organization in motor 
and sensory regions including the central opercular gyrus, supplemental motor regions, and the 



pre-and post-central gyri. Findings from Fenchel et al., 2020 utilizing NODDI metrics and 
morphometric similarity networks highlighted sensory, limbic, and parietal brain areas to have 
the largest maturational change over the neonatal period compared to cognitive brain regions49. 
These findings are consistent with histological findings of increased neurite density in this period 
in primary motor and sensory corticies92 and are further supported by diffusion MRI studies 
showing decreased diffusion anisotropy in sensorimotor corticies33, 104 and increased neurite 
density in sensory cortices56. 
 
In conclusion, our work is amongst the first to employ the GBSS framework in conjunction with 
NODDI metrics across the cortex in infants. With this framework adapted for neonatal brain, we 
forge opportunities to explore this maturation in expanded developmental epochs. Interpretation 
of our current work is limited by the cross-sectional design, limited sample diversity, and narrow 
age range of included infants. We encourage future work to utilize our current methods for 
exploring developmental patterns in more diverse samples of infants and across age ranges. 
Large-scale studies are currently underway including the “Developing Human Connectome 
Project105”, “Baby Connectome Project106”, and the “Healthy Brain and Child Development107” 
study, building the potential for innovation in the understanding of human brain development 
from its earliest stages. The development and modification of advanced tools for probing 
cytoarchitectural maturation in the cortex in infancy, such as the current infant modified GBSS 
framework, paves the way for insights into the emergence of individual developmental 
differences that may underly future behavioral outcomes and creates room for the development 
of targeted interventions that promote the long-term health and well-being of children across the 
lifespan. 
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