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0. Abstract 
 

Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in 

prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some 

studies have failed to detect differences between PTSD patients and healthy controls or 

reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, 

we sought to conduct a well-powered study to identify vulnerable networks without regard to 

neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden 

of multiple comparison correction that plagues vertex-wise methods. We derived structural 

covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data 

from 961 PTSD patients and 1,124 trauma-exposed controls without PTSD. We used regression 

analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and 

without accounting for the potential confounding effect of trauma type) and symptom severity 

in the full sample. We performed additional regression analyses in subsets of the data to 

examine associations between SCNs and comorbid depression, childhood trauma severity, and 

alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined 

brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that 

encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal 

cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in 

these networks was significantly negatively correlated with PTSD symptom severity. 

Collectively, these findings suggest that PTSD diagnosis is associated with widespread 

reductions in CT, particularly within prefrontal regulatory regions and broader emotion and 

sensory processing cortical regions. 
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1. Introduction 
Posttraumatic stress disorder (PTSD) is a debilitating psychiatric illness with a lifetime 

prevalence of nearly 10% [1]. PTSD is characterized by a constellation of symptoms including 

intrusive memories, avoidance, negative alterations in cognition and mood, and hyperarousal 

[2]. Consistent with this phenotype, a wealth of research has demonstrated that PTSD is 

associated with several structural and functional differences in brain regions involved in affect, 

cognition, and memory [3–5]. 

 

As a metric of grey matter integrity, cortical thickness studies have been particularly 

illuminating for understanding the pathophysiology of PTSD. In general, PTSD has been 

associated with lower cortical thickness in regions including the prefrontal [6–11], cingulate 

[6,12–14], and insular [15] cortices in diverse trauma-affected samples, including veterans 

[6,7,9–11,15–17], and individuals with a history of childhood trauma [6,8,14]. Notably, some 

studies have also shown that greater cortical thickness may be an important marker of 

resilience and recovery in trauma-exposed samples [18–21]. 

 

However, some studies have failed to detect differences between PTSD patients and healthy 

controls [22–29], or have suggested that PTSD is associated with greater cortical thickness in 

specific regions, including the precuneus [30], calcarine cortex [31], and superior and frontal 

gyri [21,32]. PTSD is highly heterogeneous – both in symptom profiles [33] and trauma type – 

researchers have proposed that differences in cortical thickness may be related to specific 

populations and/or symptom clusters [13,26].  However, most efforts to characterize cortical 

thickness differences implicated in PTSD have also relied upon small samples and region of 

interest (ROI) approaches [25,28,29] or trauma naïve [24,26,27] individuals. Indeed, results 

from recent meta-analytic work suggest different cortical thickness correlates emerge 

depending on whether the control group was trauma-exposed or not [32]. Although focusing on 

specific regions of the brain involved with neurobiological systems implicated in PTSD 

symptoms has proven to be an effective strategy, regional differences in cortical thickness may 
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not necessarily adhere to strict neuroanatomical boundaries or may be associated with brain 

regions not previously implicated in PTSD.  

 

To this end, novel, data-driven methods, such as non-negative matrix factorization (NMF), may 

provide powerful insights about the localized effects of PTSD on cortical thickness. NMF is an 

unsupervised machine learning method for multivariate analysis of high-dimensional 

neuroimaging data. NMF factorizes data under non-negativity constraints leading to a parts-

based representation, which enhances interpretability and statistical power [34,35]. Applied to 

anatomical data, NMF can elucidate patterns in cortical thickness variation that are shared 

within a sample, which may not adhere to neuroanatomical boundaries [35]. NMF-derived 

structural covariance networks map onto functionally-derived brain networks [35,36], and can 

aid in the interpretability of cortical thickness findings related to disease states and behavioral 

phenotypes [37]. Although no published studies have used NMF to examine structural 

measures in PTSD, the technique has been successfully implemented in various samples to 

identify cortical thickness differences related to neurodevelopment [35,38,39], impulsivity [40], 

and other psychopathology [41–44]. 

 

Leveraging a large, multisite dataset from the PGC-ENIGMA PTSD Working Group, we employed 

NMF to identify structural covariance networks (SCNs) and examine differences in cortical 

thickness within these networks associated with PTSD. In a series of linear regression models, 

we tested whether PTSD diagnosis and severity were associated with abnormalities within 

NMF-derived networks. Additionally, we examined the potential confounding effect of trauma 

type on PTSD-associated group differences by including it as a binary categorical covariate. 

Lastly, to examine the specificity of effects, we also ran models that examined associations 

between SCNs and major depressive disorder (MDD), alcohol abuse and childhood trauma 

severity, respectively. These disorders are known to have a high co-occurrence with PTSD and 

have also been linked to cortical thickness alterations [8,37,45–49]. We conducted these 

additional analyses on subsets of the data where necessary information was available. While 

we hypothesized that PTSD would be associated with lower cortical thickness in specific 
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structural networks in prefrontal [6–11] and cingulate [6,12–14] cortices, the data-driven 

capability of NMF enabled us to identify heretofore undocumented areal features on the 

cortical surface associated with PTSD.  
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2. Methods 
2.0 Overview 
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Data analysis consisted of 8 major steps (Fig. 1). (1) We assembled imaging, clinical, and 

demographic data from 22 sites participating in ENIGMA-PTSD and harmonized clinical 

variables, including PTSD and symptom severity scores. (2) We created vertex-wise cortical 

surface maps for each participant using the FreeSurfer software suite [50] (Fig. 1A). (3) We 

performed harmonization of cortical thickness data to account for site and scanner effects 

using ComBat [51] (Fig. 1B). (4) We applied a multivariate, hypothesis-free method, non-

negative matrix factorization (NMF), to identify SCNs (Fig. 1C). (5) Split-half reproducibility 

analysis and reconstruction error evaluation were used to select the optimal number of 

components (Fig. 1D). (6) We then conducted regression analyses to investigate respective 

associations between cortical thickness and PTSD diagnosis and symptom severity. The mean 

cortical thickness of 20 covariance networks from step #4 were used as the dependent 

variables in regression analyses. Regressors were added to the model to test for potential 

confounding effects of demographic variables, including sex, age, and the quadratic effect of 

age (Fig. 1E). (7) We conducted a confirmatory analysis with more homologous case-control 

samples without age or sex differences. (8) We conducted regression analyses to investigate 

the respective associations between comorbid depression, childhood trauma severity, and 

comorbid alcohol abuse and cortical thickness within SCNs. 

 

2.1 Participants 

 

Population information and T1-weighted magnetic resonance imaging (MRI) data were 

collected from 2,085 individuals who were assigned to the PTSD group (n=961) or trauma-

exposed non-PTSD control group (n=1,124). Participant data was shared by 22 sites from seven 

countries on four continents. Descriptive information on the samples is provided in Table S1. 

Inclusion and exclusion criteria for each site are summarized in Table S2. For all sites (and sub-

sites) where imaging data and demographic data were collected, current PTSD was diagnosed 

according to Diagnostic and Statistical Manual of Mental Disorders (DSM) IV or 5 criteria, using 

the following standard instruments: Clinician-Administered PTSD Scale-IV (CAPS-4; 10 sites, 14 

sub-sites; DSM-IV), CAPS-5 (5 sites, 8 subsites; DSM-5), Structured Clinical Interview (SCID-4; 4 
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sites; DSM-IV), Mini International Neuropsychiatric Interview 6.0.0 (2 sites, DSM-IV), PTSD 

Checklist-5 (PCL-5; 2 sites; DSM-5), and PTSD Checklist-Civilian Version (PCL-C; 1 site, DSM- IV). 

All study sites obtained approval from local institutional review boards or ethics committees. All 

participants provided written informed consent. 

 

2.2 Imaging acquisition and processing 

 

High-resolution 3D T1-weighted brain structural MRI (sMRI) scans were collected at 

contributing laboratories. Anatomical brain images were preprocessed at Duke University 

through a standardized neuroimaging and quality control pipeline developed by the ENIGMA 

Consortium (http://enigma.ini.usc.edu/protocols/imaging-protocols/) [52]. The raw T1 sMRI 

data were pre-processed using the FreeSurfer software suite [50] (version 5.3.0, 6.0.0 or 7.1.0; 

see Table S1) to create cortical thickness maps for each individual subject, which were mapped 

to the fsaverage5 template space. Following our previous works [35,37,44], cortical thickness 

maps were smoothed using an isotropic Gaussian filter kernel with full width at half maximum 

(FWHM) size of 20 mm (Fig. 1A; Sec. S1.1). 

 

2.3 Harmonization 

 

An important challenge when analyzing consortium data is variation introduced by site-specific 

acquisition protocols and MRI scanners, which may interact with site-specific demographic and 

clinical profiles. To address this challenge, we employed harmonization using ComBat 

[51,53,54] (Fig. 1B). ComBat removes undesired site-associated differences while preserving 

inherent biological variance in the data [51]. In the present study, three variables (i.e., age, sex, 

and PTSD diagnosis) were included as covariates to preserve associated biological variability. 

Batches were created to remove unwanted variability associated with sites and scanners. The 

ComBat approach was implemented using scripts 

(https://github.com/Jfortin1/ComBatHarmonization) running on MATLAB, version 

R2018b.9.5.0.1033004.  
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2.4 Non-negative matrix factorization analysis 

 

We used non-negative matrix factorization (NMF) to identify structural networks where cortical 

thickness covaries consistently across participants (Fig. 1C). NMF is an unsupervised, data-

driven technique that factors the data by positively weighting cortical elements that covary. 

NMF yields a parts-based representation, which is more interpretable and reproducible than 

representations obtained by other decomposition techniques (e.g., Principal Component 

Analysis and Independent Component Analysis) [34,35] and has greater statistical power than 

standard mass univariate analyses [40,41]. Details regarding the formalization of NMF have 

been provided elsewhere [34,35] and in the Supplementary Material (see Sec. S1.2).  

 

The NMF algorithm may approximate the input data at different resolutions depending on the 

user-specified parameter  that denotes the number of networks. Accordingly, we 

systematically examined multiple NMF resolutions ranging from 2 to 40 networks (in steps of 

2). To determine the optimal number of components, we performed a split-half reproducibility 

analysis and evaluated the reconstruction quality (see Fig. 1D and Sec. S1.2). The goal was to 

select a model that was reproducible and fit the data well. 

 

2.5 Statistical analyses 

 

First, we examined associations between categorical PTSD diagnosis and brain structure (Fig. 

1E). We used quadratic regression analysis to evaluate cortical thickness differences in each 

network between PTSD and control groups, after controlling for sex, age, and quadratic effects 

of age. Specifically, the following group-comparison model was employed, with  

representing the average cortical thickness in an NMF-derived SCN: 

  ~ + + +  (Eq. 1) 
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The trauma type was also added to the statistical model as a binary categorical covariate 

(military vs. civilian) for all sites and cohorts (Table S1) to examine its potential confounding 

effect on PTSD-associated group differences. Interactions of age by diagnosis and sex by 

diagnosis terms were then added to the statistical model to examine potential interactive 

effects of these factors on group differences. 

 

Second, associations between cortical thickness and dimensional posttraumatic stress symptom 

(PTSS) severity were examined. Instruments for assessing PTSS severity varied by site. Score 

homogenization was accomplished by calculating the percentage of the severity score relative 

to the maximum score possible for each instrument (Table S3). Most (20 out of 22, Table S3) 

sites assessed PTSS severities in trauma-exposed control subjects, resulting in a sub-sample of 

1,995 subjects (from both PTSD and control groups) with normalized PTSS severity scores. We 

used quadratic regression analysis to examine associations between cortical thickness in each 

network and PTSS severity, with adjustments for sex, age, and quadratic effects of age: 

 

  ~ +  + +   (Eq. 2) 

 

Lastly, we examined the respective associations of comorbid depression, childhood trauma 

severity, and comorbid alcohol abuse (referred to as ‘confounder’ in Eq. 3) with cortical 

thickness alternations. Specifically, we used regression analyses to examine whether cortical 

thickness within each network was associated with each of these confounders, after accounting 

for sex, age, and quadratic effects of age: 

  ~ + + +  (Eq. 3) 

 

This analysis was performed only for the subsets of the data that included the necessary 

information. In these subsets of the data, we performed two additional regression analyses. 

First, we included categorical PTSD diagnosis in the regression model to examine potential 
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confounding effects of comorbid depression, childhood trauma severity, and comorbid alcohol 

abuse (referred to as ‘confounder’ in Eq. 4) on PTSD-associated group differences: 

  ~ + + + +   (Eq. 4) 

 

Second, we examined associations between categorical PTSD diagnosis and brain structure 

when not controlling for the confounder (Eq. 1). 

 

Comorbid depression was modeled as a binary index distinguishing high (N = 316) vs. low (N = 

1,565) depression symptom severity based on either questionnaire-specific depression cut-off 

scores or SCID diagnosis (Table S3). We use the shorthand designation of depression throughout 

to refer to severity of depressive symptoms as reflected by the derived binary label. Thus, in the 

present context, depression does not necessarily meet strict diagnostic criteria for major 

depressive disorder per the DSM. The derived binary categorical variable was included as 

covariate in the regression analysis (Eq. 3) to investigate the association between the cortical 

thickness within each SCN and depression. This analysis was performed separately for PTSD 

patients only (N=863) and the full sub-sample (N=1,881). Lastly, two separate regression 

analyses (Eqs. 1 and 4) were performed in the full sub-sample (N=1,881) to examine group 

differences associated with PTSD and to assess the potential confounding effect of depression.  

 

Childhood trauma severity was evaluated by the total Childhood Trauma Questionnaire (CTQ) 

[55] for each subject and was recorded as the total CTQ value for each site (Table S3; Fig. S1). 

The total CTQ value was transformed to remove skewness (see Sec. S1.3) and was then 

included as covariate in the regression model (Eq. 3) to examine the associations between the 

cortical thickness within each SCN and childhood trauma severity. This analysis was conducted 

on the full sub-sample (N=589), as well as separately on PTSD patients (N=355) and control 

subjects (N=234). Lastly, two separate regression analyses (Eqs. 1 and 4) were performed in the 

full sub-sample (N=589). These analyses examined group differences associated with PTSD and 

assessed the potential confounding effect of childhood trauma severity. 
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Comorbid alcohol abuse was assessed through the diagnosis of alcohol abuse disorder (AUD) by 

different AUD tools (Table S3). Based on exclusion criteria and diagnostic information, we 

defined a binary index to distinguish potential alcohol abuse disorder (N=110) vs. non-comorbid 

alcohol (N=963) (Table S4). The binary label was then included as covariate in the regression 

model (Eq. 3) to examine the associations between the cortical thickness within each SCN and 

alcohol abuse. Separate analyses were performed for PTSD patients (N=469) and the full sub-

sample (N=1,073). Lastly, two separate regression analyses (Eqs. 1 and 4) were performed in 

the full sub-sample (N=1,073). These analyses examined group differences associated with 

PTSD and assessed the potential confounding effect of alcohol abuse. 

 

To account for multiple comparisons across all estimations, we controlled the false discovery 

rate (FDR) [56] as implemented in R [57]. An FDR corrected p < 0.05 was considered significant. 

All statistical analyses were performed using R, version 3.5.1.  
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3. Results 
 

3.1 Sample characteristics 

 
Table 1. Demographic and symptom characteristics of PTSD (N=961) and control (N=1,124) 
groups. 

Variable Control PTSD Difference p value 
N (%) 1,124 (53.9%) 961 (46.1%)   

Female N (%) 487 (43.3%) 519 (54.0%) =23.67 (df = 1) <0.0001* Male N (%) 637 (56.7%) 442 (46.0%) 
Ages (yrs: 
mean±sd) 41.00±14.41 39.40±13.08 t=-2.65 (df = 2076) 0.0081* 

Age range (yrs) 15-87 16-95   

PTSD Severity 8.64 ± 9.76 49.71±17.03 t=64.93 (df = 
1146.7) <0.0001* 

N of depression 
High/Low 33/985 283/580 =289.69 (df = 1) <0.0001* 

Data are reported as mean ± 1 standard deviation. 
df: degrees of freedom 
*: significant at p < 0.05 level 

 

Male and female subjects between 15 and 95 years old were studied. Compared to controls, 

participants with PTSD were more likely to be female (p<.0001) and were younger in age 

(p=.0081) (Table 1). The PTSD group had significantly greater PTSD severity scores (p<.0001) 

and higher comorbid depression than controls (p<.0001) (Table 1). 

 

3.2 NMF identifies reproducible structural covariance networks 

 

All measures before and after harmonization were reported as mean and standard deviation 

values for both left and right hemispheres (Table S5). Site-associated differences were removed 

by ComBat to generate harmonized cortical thickness measurements (Fig. S2, Fig. S3; see also 

Table S6). NMF analyses delineated SCNs at multiple resolutions ranging from 2 to 40 (in steps 
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of 2). The 20-SCN solution was selected based on reconstruction error evaluation and split-half 

reproducibility analysis (Fig. S4). Reconstruction error decreased consistently with increasing 

resolution and stabilized at 20 networks. Although reproducibility was not uniformly stable, a 

local peak was clearly present for the 20-SCN. Accordingly, the 20-network solution was used 

for all subsequent analyses. As in previous work using NMF [35], nearly all structural 

components were highly symmetric bilaterally (Fig. 2).   

 

 
 
3.3 PTSD is significantly associated with structural differences in multiple networks 

 

Having identified 20 interpretable SCNs using NMF, we next examined associations between 

mean cortical thickness in each SCN with PTSD diagnosis while controlling for sex, as well as 

linear and nonlinear age effects (Eq. 1). Univariate analyses revealed that there was a significant 

association between PTSD diagnosis and cortical thickness measurements in 8 SCNs after FDR 

correction (Fig. 3; see also Table S7), though characterized by small effect sizes. Regions 

associated with PTSD included the bilateral superior and medial superior frontal cortex (SCN 1 

and 14), the motor cortex (SCN 2), the insular cortex (SCN 4), the orbitofrontal cortex (SCN 5), 

the medial occipital cortex (SCN 15), the anterior and the posterior cingulate cortex (SCN 16 
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and 18). PTSD diagnosis was associated with lower cortical thickness in each of these networks 

(Table S7; Table S8). Inclusion of the trauma type as covariate in the regression models 

consistently produced similar results. The significant associations between the SCNs and PTSD 

diagnosis remained unchanged (Table S7). 

 
 
3.4 Association between PTSD diagnosis and SCNs is independent of age and sex 

 

Having established that diminished cortical thickness was associated with PTSD, we next 

examined whether this effect was moderated by age or sex. Notably, there were no significant 

interactions of sex and age by PTSD diagnosis in any network (Table S9). Considering age and 

sex were significantly different between PTSD and control subjects (Table 1), we repeated the 
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NMF analysis in age- and sex-matched subsamples obtained by excluding 4 subsites, including 2 

cohorts of young female PTSD patients (Groningen, Mannheim) and 2 cohorts with old male 

control subjects (Duke-TBIPTSD, Nanjing-Yixing). The rebalanced groups did not show significant 

age or sex differences (39.66±13.26 years in PTSD vs. 40.10±14.35 years in control, T = 0.69, df 

= 1886, p = 0.49; 917 female subjects vs. 986 male subjects, =0.74, df = 1, p = 0.39). Despite 

the reduced power of the rebalanced groups, 6 of the 8 significant SCNs were still found to be 

associated with PTSD diagnosis (Table S10) and characterized by small effect sizes. Although the 

motor cortex (SCN 2) and the posterior cingulate cortex (SCN 18) were not significant in this 

subsample, they trended toward significance (pfdr = 0.0621 and pfdr = 0.0710, respectively). 

Again, within all these networks, PTSD diagnosis was associated with lower cortical thickness. 

 

3.5 Regression analysis with PTSS severity yields similar results  

 

We next examined associations between dimensional PTSS severity and cortical thickness 

across SCNs (Eq. 2). Results revealed that increased PTSS severity was associated with reduced 

cortical thickness in 8 networks (FDR-corrected; Table S11), though characterized by small 

effect sizes. Notably, 7 of these 8 networks overlapped with those found to be related to PTSD 

diagnosis (Fig. 4). The posterior cingulate cortex (SCN 18) and the anterior superior temporal 

gyrus (SCN 9) were the only differences between the categorical and dimensional analyses. The 

former was FDR-significant in the categorical group analysis, while the latter was FDR-

significant in the dimensional analysis. However, the posterior cingulate cortex (SCN 18) 

trended toward significance in dimensional analysis (pfdr = 0.0621), and the anterior superior 

temporal gyrus (SCN 9) trended toward significance in the categorical group analysis (pfdr = 

0.0547). 
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3.6 Significant association with depression level is found in medial occipital cortex 

 

Next, we examined the associations between depression and cortical thickness separately for 

PTSD participants and all subjects with depression information (Eq. 3). When examining only 

PTSD participants, no significant effects of depression severity were found in any network 

(Table S12), suggestive of PTSD-specific cortical thickness associations. When examining the 

entire sample, cortical thickness in the medial occipital cortex (SCN 15) was found to be 

significantly associated with depression severity (Fig. S5; see also Table S12), albeit with a small 

effect size. In this case, subjects with high depression symptoms demonstrated lower cortical 

thickness in this network compared to those with low depression symptoms. When including 

categorical PTSD diagnosis and depression in the same regression model (Eq. 4), no significant 
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associations with SCNs were detected for either depression severity or PTSD diagnosis. This is 

potentially because of the moderate to strong positive correlation between depression severity 

and PTSD diagnosis (Pearson correlation coefficient (r) was = 0.39 (p < 0.001)), and between 

depression and PTSS ( = 0.47 (p < 0.001)). The observed multicollinearity may have effectively 

lowered the statistical power to detect individual effects of either PTSD or depression. When 

repeating the primary regression analysis (Eq. 1) in this sub-sample, a statistically significant 

association between PTSD diagnosis and cortical thickness measurements was detected in the 

same 8 SCNs as in the full sample (Table S13). The results were characterized by small effect 

sizes. In summary, the separate analyses for depression and PTSD revealed non-overlapping 

associations with cortical thickness in distinct SCNs. These findings suggest that the effects 

observed for PTSD are likely specific to this condition and are not influenced by depression. 

 

3.7 Assessing the association between cortical thickness with childhood trauma severity 

or alcohol abuse 

 

Lastly, we conducted separate examinations to assess the associations between childhood 

trauma severity or alcohol use disorder and cortical thickness for all subjects with available 

corresponding information (Eq. 3). Our analysis, including the full sub-sample, PTSD patients 

only, and control subjects only, revealed no significant associations between CTQ and SCNs 

(Table S14). Similarly, we did not identify any significant associations between AUD and SCNs in 

both the subset of PTSD participants and the full sub-sample (Table S15). Additionally, when we 

separately assessed the potential confounding effect of childhood trauma or alcohol abuse on 

PTSD-associated group differences (Eq. 4) in the sub-sample for which CTQ or AUD data was 

available, no significant associations were detected for CTQ or AUD. Additionally, in these much 

smaller samples, it was not possible to identify statistically significant effects of PTSD, 

irrespective of whether we included the confounder in the regression analyses (Eq. 4) or not 

(Eq. 1). 
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4. Discussion 
In 2,085 participants from 22 international sites, we investigated associations between PTSD 

and cortical thickness in networks with strong cortical thickness covariance patterns 

ascertained by NMF. PTSD was associated with decreased cortical thickness in 8 of the 20 

distinct SCNs characterized by vertices within the following anatomic structures: bilateral 

superior and medial superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, 

medial occipital cortex, anterior and posterior cingulate cortex. Including trauma type as 

covariate in the regression analysis did not change the results. Associations with PTSD symptom 

severity (rather than diagnosis) were consistent: cortical thickness differences were related to 

PTSD severity in all networks associated with PTSD diagnosis except for the posterior cingulate 

cortex. One additional network in the anterior superior temporal gyrus was associated with 

PTSD symptom severity. The group with moderate/severe comorbid depression symptoms 

differed from the group with mild comorbid depression symptoms in cortical thickness within 

the medial occipital cortex. In the sub-samples where CTQ or AUD information was available, 

we did not identify any significant associations with PTSD, CTQ or AUD, irrespective of whether 

we ran the regression analysis by separately including only PTSD, only the confounder, or both. 

 

A unique aspect of our study is the two-stage approach with an initial data reduction followed 

by a hypothesis generation stage. NMF is well suited to tackling inter-individual spatial 

heterogeneity because it identifies networks without regard to neuroanatomic boundaries. 

Instead, NMF identifies patterns of thickness covariation that transcend gyral-based ROI 

boundaries. Prior studies applying NMF to healthy subjects identified patterns of gray matter 

structural covariance that differed anatomically but aligned closely with functionally defined 

brain networks [35]. Additionally, SCNs defined by NMF provide a parsimonious summary of 

high-dimensional data, which may be more interpretable than data reduction with principal 

component analysis or independent component analysis [34]. Importantly, the concise 

summary of the data provided by NMF limits multiple comparisons, thus reducing the need for 

correction that can plague mass-univariate vertex-wise studies. Consequently, we were able to 
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apply a rigorous FDR correction to all comparisons, instead of relying on cluster-based 

inference, which may lead to higher rates of type I errors [58]. 

 

Another unique aspect of our study is that it represents the largest published cortical thickness 

study in PTSD to date. The large sample size enhanced our statistical power and sensitivity to 

detect effects in multiple networks. Despite the small effect sizes observed, extensive prior 

research has documented that small underpowered studies often yield inflated effect sizes 

[59,60]. Therefore, our results likely provide a more accurate representation of the true effect 

size compared to findings from smaller studies. This may explain discrepancies with previous 

studies reporting increased cortical thickness in smaller samples consisting of 67 patients with 

PTSD [30], 15 patients with recent onset PTSD [31] and 30 patients who successfully recovered 

from PTSD [21], respectively. Additional factors might have contributed to the reported 

differences, including methodological choices. For instance, the use of cluster-based inference 

employed in [21,30] can lead to significant type I error rates [58]. 

 

The present study is comparable in scale and scope to the ENIGMA-PTSD study of regional 

cortical volume by Wang and colleagues [61] who assessed regional cortical volume (i.e., the 

product of cortical thickness and cortical surface area for any given region). Despite different 

analytic approaches, our cortical thickness findings similarly implicate cortical differences within 

the R-superior frontal gyrus, bilateral orbitofrontal gyrus, insular cortex, L-anterior cingulate 

gyrus, and L-posterior cingulate gyrus related to PTSD. In addition, we found PTSD to be 

associated with cortical thickness in the R-anterior cingulate gyrus, R-posterior cingulate gyrus, 

and the L- superior frontal gyrus, which were not linked to cortical volume. By contrast, Wang 

et al. (2021) reported cortical volume differences associated with PTSD for several regions, not 

identified by the present study, including the precuneus, middle temporal gyrus, superior 

parietal gyrus, and inferior parietal gyrus [61]. As cortical volume captures both cortical 

thickness and surface area, the latter set of regions may possess stronger associations with 

regional surface area but may be weakly linked to cortical thickness.  
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The partially overlapping and partially divergent associations of PTSD to cortical thickness in 

comparison to cortical volume may relate to the stronger role of genetics in determining 

cortical surface area than cortical thickness, which is more influenced by environmental factors, 

effects of PTSD illness, or individual PTSD symptom features [62]. Specifically, cortical volume 

may better index combined genetic and environmental effects, whereas cortical thickness may 

capture the deleterious effects of trauma exposure and pathology and cortical surface area may 

be more influenced by genetic contributors. 

 

In addition to links between cortical structural alterations and PTSD [6,7,13–16], prior evidence 

links altered cortical structure to brain function in PTSD [63]. Disruption in emotion processing 

circuits and top-down prefrontal dysregulation of these circuits are linked to PTSD [64]. In this 

context, the left orbitofrontal gyrus plays an important role in integrating sensory and limbic 

inputs and in top-down prefrontal inhibitory regulation of emotion and sensory regions [65,66]. 

Patients with orbitofrontal gyrus lesions demonstrate attention deficits and impaired response 

inhibition to emotional stimuli [67]. Thus, low left orbitofrontal gyrus thickness/volume may 

impair inhibitory top-down regulation of emotion and sensory attention. Reduced gray-matter 

density in the anterior insula has been linked to greater intrusive memories following trauma 

[68,69], which may explain anterior insula over-responsiveness to negative emotions in PTSD 

[70]. We found reduced bilateral cortical thickness in the insula, which is consistent with a 

heightened sensitivity to interoceptive sensations, internal body cues, and a predilection 

toward threat-biased interpretations, which are common features of PTSD.  

 

Lower cortical thickness in motor cortex and primary visual cortex while unexpected, is 

nonetheless supported by recent discoveries. In sexual assault survivors with PTSD, reduced 

gray matter density and functional connectivity within the visual cortex are associated with re-

experiencing symptoms and self-blame [71]. These primary sensory regions are activated by 

intrusive memories that are experienced in PTSD and MDD [72]. Functional MRI studies reveal 

hyperresponsiveness of the anterior cingulate in PTSD [73], including in monozygotic twins, 

which represents a familial risk marker for PTSD [74]. Similarly, pre-conscious actions to 



24 
 

mitigate threat or danger in PTSD patients are associated with stronger functional connectivity 

between motor cortex and periaqueductal gray, which initiates defensive responding [75,76]. 

The medial occipital cortex, which is well known for primary visual perception, is engaged in 

feedforward and feed backward signaling of threat or danger [77,78]. A recent demonstration 

of neuromodulation of the visual cortex reduced the intensity of intrusive trauma memories 

[79], while treatment directed at modification of attentional bias reduced PTSD symptoms and 

modulated activity in visual processing pathways. Thus, converging evidence implicates the 

involvement of primary sensory and motor regions in PTSD [80,81], which may explain reduced 

cortical thickness in these regions. However, the precise causal mechanisms connecting brain 

structure to function are unclear, as are the cellular mechanisms of learning-induced grey 

matter changes. Recent evidence suggests that the remodeling of neuronal processes, which 

involves presynaptic terminals forming synapses with dendritic spines, as a possible mechanism 

[82–85]. 

 

When we examined associations between cortical thickness and depression symptom severity 

in PTSD patients, no networks were significantly associated with depression severity. 

Additionally, when examining associations between cortical thickness and PTSD diagnosis while 

controlling for depression in the full sub-sample, no networks were significantly associated with 

PTSD diagnosis. These results have various potential interpretations. First, we found greater 

depression symptom severity in PTSD patients and greater PTSD symptom severity in depressed 

subjects, suggesting a positive association between PTSD and depression symptoms. This raises 

a possibility that variance shared across PTSD and depression effectively lowered the statistical 

power to detect true PTSD effects [86,87]. Second, symptoms such as negative emotions, 

cognitive distortions, and avoidance are common to both disorders. Third, it is possible that 

depression symptoms and PTSD symptom severity are mediated, in part, by shared brain 

abnormalities. If any or all these explanations are valid, our findings would suggest that lower 

cortical thickness in some regions could be associated with PTSD. Alternatively, the current 

results cannot rule out the possibility that thinner cortex in these regions may be associated 

with depression, but not PTSD. 
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Several limitations of our study should be considered when interpreting its results. First, while 

we primarily focused on the 20-network solution as the solution that is both reproducible and 

fits the data well, the optimal number of networks is likely a function of the input data. Second, 

data were derived from cohorts that varied in image acquisition, processing, and clinical 

assessment instruments. We adjusted for data source statistically and had acceptable 

heterogeneities of cortical regional volumes across cohorts. Third, additional factors could 

affect cortical thickness (e.g., cohort stratification, medications, duration of illness, trauma 

type, age at trauma exposure, trauma exposure of control subjects, and other comorbidities 

including anxiety disorders and substance abuse). However, we were unable to account for the 

potential effects of these factors on cortical thickness because we lacked reliable and consistent 

information across sites. To partially address this limitation, we performed additional analyses 

focusing on trauma type, child trauma severity and alcohol use disorder, which were the most 

commonly reported additional covariates across sites. When examining the effect of trauma 

type in the full sample, we did not observe any significant effects of trauma type on SCNs, while 

the associations between the SCNs and PTSD diagnosis remained unchanged. The effects of 

CTQ and AUD were separately analyzed in small subsets of the full dataset. We did not observe 

any significant effects of CTQ or AUD on SCNs. However, we also did not detect any significant 

effects of PTSD in these small subsets. Thus, the small subsets seem (1) inadequately powered 

to address the association of PTSD on SCNs, (2) perhaps inadequately powered to reveal 

associations between CTQ and AUD on the SCNs or possibly (3) there is shared variance 

between PTSD and CTQ or between PTSD and AUD that is producing a negative result when 

testing the association between PTSD and SCNs. Ultimately, the small sample size of 

participants with CTQ and AUD measures is a limitation and their associations with SCNs should 

be investigated in future analyses. Finally, the cross-sectional data also cannot distinguish the 

thickness differences that occurred before vs. after trauma exposure. Further studies are 

needed to examine confounding effects of comorbid disorders, and to identify age-specific 

PTSD abnormalities.  

 



26 
 

In summary, NMF identified unbiased patterns of cortical thickness covariation that are marked 

by low effect sizes and are associated with lower cortical thickness in PTSD. Our findings 

recapitulate prior reports using ROI and whole brain methods, but also align closely with 

functionally defined brain networks. 
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Figure legends 

Figure 1 Workflow A) We created cortical thickness maps for each subject from T1 sMRI data 

preprocessed using the FreeSurfer software. Cortical thickness measurements for all subjects 

were arrayed column-wise to form a cortical thickness matrix. B) Cortical thickness data was 

harmonized using Combat to remove variation introduced by site-specific acquisition protocols 

and MRI scanners. C) We applied non-negative matrix factorization (NMF) on the ComBat-

harmonized cortical thickness matrix  to identify structural covariance networks. NMF 

decomposed this input matrix  into a component matrix  and a coefficient matrix . The 

component matrix  represents estimated networks (columns) and their loadings on each 

vertex (rows); the example map shows loadings from one network and corresponds to a column 

in the  matrix. The weight matrix  provides the subject-specific weights (columns) for each 

network (rows); the histogram shows CT scores in a single network and corresponds to a row in 

the  matrix. D) Split-half reproducibility analysis and reconstruction quality evaluation were 

performed to select the optimal model. E) Once the optimal solution was selected, regression 

analyses were performed to examine associations between each network and PTSD diagnosis, 

PTSD severity scores and depression symptom severity, respectively. 
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Figure 2. Structural covariance networks delineated by NMF are shown for the 20-network 

solution. The spatial distribution of each network is indicated by loadings at each vertex in 

arbitrary units (warmer colors represent higher loadings). High symmetry can be found 

between left (L) and right (R) hemisphere. The anatomic coverage of each structural covariance 

network was as follows: 1) superior frontal cortex (Lateral); 2) motor cortex (Lateral); 3) 

temporal pole (Inferior); 4) insular cortex (Lateral); 5) orbitofrontal cortex (Inferior); 6) lateral 

occipital cortex (Lateral); 7) precuneus (Medial); 8) left superior parietal cortex (Lateral); 9) 

anterior superior temporal gyrus (Lateral); 10) primary somatosensory cortex (Lateral); 11) right 

middle temporal gyrus (Lateral); 12) posterior middle temporal gyrus (Lateral); 13) 

temporoparietal junction (Lateral); 14) medial superior frontal cortex (Medial); 15) medial 

occipital cortex (Medial); 16) anterior cingulate cortex (Medial); 17) cuneus (Medial); 18) 

posterior cingulate cortex (Medial); 19) fusiform gyrus (Medial); and 20) middle cingulate gyrus 

(Medial). Since the networks were defined using a data-driven process, the anatomic naming is 

intended to be a rough approximation for the location, not a precise description. 
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Figure 3. Regression analysis results revealed that PTSD diagnosis was associated with thinner 

cortex in multiple SCNs. The composite network visualization was obtained by assigning each 

vertex to the network that has the highest loading for that vertex (from the  matrix), across 

all 20 networks. This association was maximal in SCNs 1 and 5, which included superior frontal 

cortex (SCN 1) and orbitofrontal cortex (SCN 5). Significant associations were also present in 

SCNs that included the motor cortex (SCN 2), insular cortex (SCN 4), medial superior frontal 

cortex (SCN 14), medial occipital cortex (SCN 15), anterior cingulate cortex (SCN 16), and 

posterior cingulate cortex (SCN 18). Both significant and non-significant SCNs are annotated 

with boundaries. Lateral and medial views of these significant SCNs are shown for left and right 

hemisphere, respectively. 
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Figure 4. Regression analysis results revealed that PTSS severity score was associated with 

thinner cortex in multiple SCNs. This association was maximal in SCNs 1 and 5, which included 

superior frontal cortex (SCN 1) and orbitofrontal cortex (SCN 5). Significant associations were 

also present in SCNs that included the motor cortex (SCN 2), insular cortex (SCN 4), anterior 

superior temporal gyrus (SCN 9), medial superior frontal cortex (SCN 14), medial occipital cortex 

(SCN 15), and anterior cingulate cortex (SCN 16). Both significant and non-significant SCNs are 

annotated with boundaries. Lateral and medial views of these significant SCNs are shown for 

left and right hemisphere, respectively.  
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