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ABSTRACT
Trait mindfulness refers to one's disposition or tendency to pay attention to their experiences in the present moment, in a non-
judgmental and accepting way. Trait mindfulness has been robustly associated with positive mental health outcomes, but its 
neural underpinnings are poorly understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and 
between-network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks. However, it is unclear 
how generalizable the findings are, how they relate to different components of trait mindfulness, and how other networks and 
brain areas may be involved. To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness to-
date, consisting of a pre-registered connectome-based predictive modeling analysis in 367 meditation-naïve adults across three 
samples collected at different sites. In the model-training dataset, we did not find connections that predicted overall trait mind-
fulness, but we identified neural models of two mindfulness subscales, Acting with Awareness and Non-judging. Models included 
both positive networks (sets of pairwise connections that positively predicted mindfulness with increasing connectivity) and 
negative networks, which showed the inverse relationship. The Acting with Awareness and Non-judging positive network models 
showed distinct network representations involving FPN and DMN, respectively. The negative network models, which overlapped 
significantly across subscales, involved connections across the whole brain with prominent involvement of somatomotor, visual 
and DMN networks. Only the negative networks generalized to predict subscale scores out-of-sample, and not across both test 
datasets. Predictions from both models were also negatively correlated with predictions from a well-established mind-wandering 
connectome model. We present preliminary neural evidence for a generalizable connectivity models of trait mindfulness based 
on specific affective and cognitive facets. However, the incomplete generalization of the models across all sites and scanners, 
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limited stability of the models, as well as the substantial overlap between the models, underscores the difficulty of finding robust 
brain markers of mindfulness facets.

1   |   Introduction

Mindfulness, often defined as the act of paying attention to 
the present moment without judgement (Bishop et al. 2004), is 
a construct that has been researched intensely in recent years. 
Western psychological theories of mindfulness propose that 
mindfulness varies in a meaningful, reliable way across in-
dividuals (Baer et  al.  2006; Brown and Ryan  2003; Rau and 
Williams 2016), and that this “trait mindfulness” is a malleable 
quality that can be trained through repeated states of mindful-
ness (e.g., meditation) (Kiken et al. 2015; Quaglia et al. 2016). 
Trait mindfulness is a multidimensional construct that en-
compasses paying attention to the present moment, relating 
to thoughts and feelings in an accepting way, and more. Trait 
mindfulness is often measured by self-report scales, such as the 
Five Facet Mindfulness Questionnaire (FFMQ) (Baer, Smith, 
and Allen  2004) and the Mindful Attention Awareness Scale 
(MAAS) (Brown and Ryan  2003). Greater trait mindfulness 
has been frequently associated with a range of positive mental 
health outcomes, including more positive affect, improved self-
compassion, greater openness to experience, and better quality of 
life (Allen, Romate, and Rajkumar 2021; Amundsen et al. 2020; 
Chu and Mak 2020; Kong, Wang, and Zhao 2014; Schutte and 
Malouff  2011), and negatively associated with outcomes like 
negative affect, stress, and anxiety (Carpenter et al. 2019; Coffey 
and Hartman 2008; de Bruin, Zijlstra, and Bögels 2014; Greco, 
Baer, and Smith 2011; Tomlinson et al. 2018; Treves et al. 2023). 
Given the importance of trait mindfulness as a predictor of 
mental health, there is a clear need to understand its neural un-
derpinnings. Neuroimaging of trait mindfulness could help us 
understand mental health conditions (Zhuang et  al.  2017), re-
veal pathways of action in mindfulness interventions (Goldberg 
et  al.  2019), and provide possible targets for neuromodulation 
(Cain et al. 2024; Zhang et al. 2023). Motivated by these possibil-
ities, this study investigated the functional neuroimaging basis 
of trait mindfulness.

Resting-state functional magnetic resonance imaging (fMRI) 
data, measured when participants lie awake in the fMRI scanner 
in a task-free state, may provide brain-based measures correlat-
ing with trait mindfulness. A resting state does not explicitly 
engage cognitive or emotional processes. Instead, it is typically 
used to study correlated intrinsic brain signals, or functional 
connectivity, while a participant is at rest. These correlations, 
which can be reliable given sufficient data (Finn et  al.  2015; 
Laumann et al. 2015; Noble et al. 2017), are thought to reflect 
stable aspects of individual functional brain organization (Shen 
et al. 2017; Smith et al. 2013). In addition, resting state data are 
relatively easy to collect and can be compiled in large online 
databases to increase sample size (Biswal et al. 2010; Eickhoff 
et al. 2016; Poldrack and Gorgolewski 2017).

Static functional connectivity (SFC) is measured by correlations 
between brain regions over the course of a resting-state fMRI 
scan, and several networks of correlated brain regions are plau-
sibly related to variation in trait mindfulness. One network is the 

default-mode network (DMN), involved in internally focused, 
self-referential processing, and consisting of brain areas such as 
the precuneus, posterior cingulate, and ventromedial prefrontal 
cortex (Raichle et al. 2001). Two other candidate networks are 
the salience network (SN), involved in stimulus-driven attention 
and including the insula and mid-cingulate (Seeley et al. 2007); 
and the frontoparietal network (FPN), involved in externally fo-
cused, goal-directed attention and consisting of lateral frontal 
and parietal areas (Dosenbach et al. 2008; Greicius et al. 2003; 
MacDonald et al. 2000).

Despite at least nine studies on resting-state SFC and trait mind-
fulness (Bilevicius, Smith, and Kornelsen 2018; Doll et al. 2015; 
Harrison et  al.  2019; Hunt et  al.  2022; Kong et  al.  2016; Li 
et  al.  2022; Parkinson, Kornelsen, and Smith  2019; Shaurya 
Prakash et  al.  2013; Wang et  al.  2014), there is no consistent 
relation between these networks and trait mindfulness. For 
example, Bilevicius, Smith, and Kornelsen  (2018) found that 
decreased connectivity of the SN and the cuneus (often consid-
ered part of the DMN) correlated with MAAS total scores, but 
Parkinson, Kornelsen, and Smith  (2019), found that increased 
connectivity of the SN and cuneus correlated with FFMQ 
total scores. Both studies were conducted with n ~ 30 partic-
ipants. Some studies found that trait mindfulness correlated 
with reduced within-DMN connectivity (Bilevicius, Smith, and 
Kornelsen  2018; Doll et  al.  2015; Harrison et  al.  2019; Wang 
et al. 2014), but a subsequent larger sample study (n ~ 100) failed 
to replicate this finding (Hunt et al. 2022). Sources of variability 
between studies could stem from variable sample characteris-
tics, small sample sizes, different methodologies (i.e., choice of 
seed regions), or a lack of test–retest reliability in the fMRI mea-
sures. A broader concern is that mindfulness may not be a uni-
tary trait (Altgassen, Geiger, and Wilhelm 2023; Beloborodova 
and Brown 2023) and, therefore, it is unlikely to involve unitary 
brain processes. It may be that mindfulness involves related 
but distinct subcomponents like attention and non-judgement 
(Bishop et al. 2004). Indeed, the FFMQ was developed based on 
factor analyses of previous mindfulness questionnaires, result-
ing in statistically dissociable facets of Acting with Awareness 
(AA), Non-judging (NJ), Non-reactivity (NR), Describing (D), and 
Observing (O) (Baer et al. 2006, 2008; although Observing may 
show limited validity, Gu et  al.  2016). AA refers to attending 
to one's experiences and actions, for example, “It seems I am 
running on automatic without much awareness of what I'm 
doing” (reverse-coded). NJ relates to not judging one's thoughts 
or emotions, for example, “I criticize myself for having irratio-
nal or inappropriate emotions” (reverse coded). Non-reactivity 
involves observing thoughts without being caught up in them, 
for example, “I perceive my feelings and emotions without hav-
ing to react to them.” Describing refers to labeling emotions with 
words, for example, “I am good at finding words to describe my 
feelings.” Last, Observing is defined as noticing bodily sensa-
tions, for example, “I pay attention to sensations, such as the 
wind in my hair or sun on my face.” These individual com-
ponents may relate to different patterns of resting-state brain 
connectivity.
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Here we addressed these concerns in a preregistered, multisite 
study of resting-state fMRI and trait mindfulness to date. 
The present sample (n = 367 meditation-naïve adults) consti-
tutes the largest sample size of any laboratory-based neuro-
imaging study of trait mindfulness (for a systematic review, 
see (Treves, Pichappan, et  al.  2024). We used a data-driven, 
whole-brain approach called connectome-based predictive 
modeling (CPM). CPM tests pairwise connections across the 
whole brain (Shen et al. 2017), and can find positive and nega-
tive network models that predict individual differences. A key 
feature of CPM is prediction—whereas correlation may inflate 
the strength of an association, prediction of held-out data is 
more accurate (Gabrieli, Ghosh, and Whitfield-Gabrieli 2015). 
CPM has proven predictive power for individual differences 
in IQ, creativity, sustained attention, mind-wandering (MW), 
and other traits (Beaty et  al.  2018; Finn et  al.  2015; Kucyi 
et  al.  2021; Rosenberg et  al.  2015). In this study, we used 
CPM to investigate relationships between trait mindfulness, 
assessed with the FFMQ, and resting-state SFC in functional 
networks across the whole brain (including the DMN, FPN, 
and SN). We assessed whether the relationships generalized to 
independent samples, and we examined the relations of brain 
networks to the overall FFMQ score as well as the five FFMQ 
facets. We hypothesized a priori that mindfulness would be 
predictable by brain measures, but did not propose specific 
brain areas, or which facets would be predictable, given the 
inconsistencies in the previous literature.

2   |   Materials and Methods

We preregistered this study before analysis at https://​osf.​io/​
dtk9a/​​. All deviations are reported in the Data S1.

2.1   |   Training Dataset: Wisconsin

We obtained imaging and phenotypic data from the University 
of Wisconsin–Madison meditation study (NCT02157766). The 
sample consisted of 206 meditation-naïve participants (age 
M = 30.9, SD = 13.1 years, 85 male) who completed an eyes-
open resting-state scan and the FFMQ (Baer et  al.  2006). Of 
those 206 participants, 71 had asthma, and the full sample was 
retained. One of the aims of the original trial was to evaluate 
the relationship between psychological factors and asthma, but 
this aim was not relevant to the present study. Asthma status 
was controlled for in our analyses by conducting partial correla-
tions with an indicator variable, given evidence for relationships 

between chronic inflammatory conditions and functional con-
nectivity (Aruldass et al. 2021; Labrenz et al. 2019) as well as 
mental health (Stanescu et al. 2019). No participants had psychi-
atric diagnoses.

Images were acquired on a GE MR750 3.0 Tesla MRI scanner 
with a 32-channel head coil. Anatomical scans consisted of a 
high-resolution 3D T1-weighted inversion recovery fast gradi-
ent echo image (450 ms inversion time; 256 × 256 in-plane res-
olution; 256 mm field of view [FOV]; 192 × 1.0 mm axial slices). 
A 12 min functional resting-state scan run was acquired using 
a gradient echo echo-planar imaging (EPI) sequence (360 vol-
umes; repetition time [TR]/echo time [TE]/Flip, 2000/20 ms/75°; 
224 mm FOV; 64 × 64 matrix; 3.5 × 3.5 mm in-plane resolution; 
44 interleaved sagittal slices; 3 mm slice thickness with 0.5 mm 
gap). The in-plane resolution was decreased after the first 21 par-
ticipants from 3.5 × 3.5 to 2.33 × 3.5 mm to better address sinus-
related artifacts, resulting in a matrix of 96 × 64. Resolution 
change was controlled for in subsequent analyses by partialling 
out an indicator variable.

2.2   |   Test Dataset: Stanford Science 
of Behavior Change

We obtained imaging and phenotypic data from the Stanford 
Science of Behavior Change project (https://​scien​ceofb​ehavi​
orcha​nge.​org/​proje​cts/​poldr​ack-​marsch/​) (Bissett et  al.  2024). 
The sample consisted of 82 meditation-naïve participants (age 
M = 23.6, SD = 4.9 years, 27 male) who completed an 8-min eyes-
open resting state scan and the FFMQ (Baer et  al.  2006). Of 
those 82 participants, 22 had diagnoses of anxiety, depression, 
or other clinical conditions, and all participants were retained. 
To control for the influences of clinical conditions, modelling 
approaches employed partial correlations. When removing the 
clinical participants, results mirrored the partial correlation 
findings.

Participants were scanned in a GE Discovery MR750 3-Tesla 
system with a 32-channel Nova Medical head coil at the 
Stanford center for Cognitive and Neurobiological Imaging. 
The T1-weighted scan used a BRAVO sequence with the fol-
lowing parameters: duration (4 min and 50 s), TR (7.24 ms), TE 
(2.784 ms), flip angle (12°), slice number (186), and resolution 
(0.9 mm isotropic voxels). The T2*-weighted, gradient-echo 
echo-planar imaging, scan parameters were as follows: dura-
tion (8 min), multiband acceleration factor (8), TR (0.68 s), TE 
(30 ms), flip angle (53°), echo spacing (0.57 ms), slice number 
(64), resolution (2.2 mm isotropic), and phase encoding ante-
rior to posterior.

2.3   |   Test Dataset: Leipzig Mind–Brain–Body

We downloaded openly available imaging and phenotypic data 
from the functional connectome phenotyping dataset (Babayan 
et al. 2019), a component of the MPI-Leipzig Mind–Brain–Body 
project (Mendes et al. 2019). Procedures for this study were ap-
proved by the ethics committee at the medical faculty of the 
University of Leipzig (097/15-ff). The sample consisted of 79 
meditation-naïve participants (modal age range 20–25, 45 male) 

Summary

•	 This large multi-site study finds the first evidence of 
generalizable brain differences associated with higher 
or lower mindfulness across individuals.

•	 Somatomotor, visual and DMN network connectivity 
featured prominently in predicting mindfulness.

•	 Brain differences were not found across all sites, and 
reliability over fMRI sessions was low, underscoring 
the difficulty of finding a “mindful brain.”
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who completed four eyes-open resting-state scans and com-
pleted the FFMQ (Baer et al. 2006), translated to German. No 
participants had psychiatric diagnoses.

Participants were scanned in a 3-Tesla Siemens Magnetom 
Verio system with a 32-channel head coil at the University of 
Leipzig. The T1-weighted, 3DMP2RAGE, scan parameters 
were as follows: duration (8.22 min), TR (5 s), TE (2.92 ms), flip 
angle 1/2 (4/5°), TI 1/2 (700/2500 ms), slice number (176), res-
olution (1.0 mm isotropic). The T2*-weighted, gradient-echo 
echo-planar imaging, scan parameters were as follows for each 
of the four runs: duration (15 min 30 s), multiband acceleration 
factor (4), TR (1.4 s), TE (39.4 ms), flip angle (69°), echo spacing 
(0.67 ms), slice number (64), and resolution (2.3 mm isotropic). 
In the first and third runs, the phase encoding direction was 
anterior to posterior, whereas in the second and fourth runs, the 
phase encoding direction was posterior to anterior.

2.4   |   Measures

The FFMQ consists of 39 questions, corresponding to five sta-
tistically separable subscales: AA, NJ, NR, D, and Observing (O) 
(Baer et  al.  2006, 2008). Each question on the FFMQ is rated 
on a 5-point Likert scale, ranging from “1 = Never or very rarely 
true” to “5 = Very often or always true”. The AA, NJ, and D sub-
scales include reverse-scored questions. The lowest possible 
total score is 39 and the highest possible score is 195, with higher 
scores representing higher levels of mindfulness. We used the 
total scores, the total scale without observing (Baer, Gu, and 
Strauss 2022; Gu et al. 2016; Pang and Ruch 2019), and the sub-
scales. The FFMQ has demonstrated acceptable internal consis-
tency across a range of samples (0.72–0.92, Baer et al. 2008). We 
assessed relationships between the subscales using Pearson's 
correlations in the Wisconsin dataset. For comparisons of the 
total FFMQ scores between the datasets, we conducted simple 
unpaired, heteroskedastic t-tests given the large sample sizes. 
We reported effect sizes using Cohen's d.

2.5   |   Procedure

Preprocessing was identical to Kucyi et al. (2021) and details 
are provided. We preprocessed each fMRI run individually 
using the same procedures across datasets, based on proce-
dures implemented in the CONN toolbox (version 21a [https://​
www.​nitrc.​org/​proje​cts/​conn]) (Whitfield-Gabrieli and Nieto-
Castanon  2012) and SPM12 in Matlab R2019a (Mathworks 
Inc., Natick, MA). Preprocessing steps included deletion of the 
first four volumes, realignment and unwarping (Andersson 
et  al.  2001), and identification of outlier frames (frame-wise 
displacement > 0.9 mm or global BOLD signal change > 5 SD) 
(Nieto-Castanon 2020). Functional and anatomical data were 
normalized into standard MNI space and, in a unified step, 
segmented into gray matter, white matter (WM), and cerebro-
spinal fluid (CSF) (Ashburner and Friston 2005). Smoothing 
of fMRI data consisted of spatial convolution with a Gaussian 
kernel of 6 mm full-width half-maximum (FWHM).

fMRI denoising involved linear regression of the following pa-
rameters from each voxel: (a) five noise components each from 

minimally eroded WM and CSF, respectively, based on aComp-
Cor procedures (Behzadi et al. 2007; Chai et al. 2012) (b) 12 mo-
tion parameters (three translation, three rotation, and associated 
first-order derivatives); (c) all outlier frames identified within 
participants; and (d) linear BOLD signal trend within session. 
After nuisance regression (Hallquist, Hwang, and Luna  2013), 
data were bandpass filtered to 0.008–0.09 Hz. Denoising proce-
dures have been shown to reduce the impact of head motion 
on functional connectivity (Muschelli et al. 2014), but excessive 
head motion may confound estimates (Power, Schlaggar, and 
Petersen 2015; Siegel et al. 2017). To avoid this possibility, we ex-
cluded participants with mean overall frame-wise displacement 
(FD) of > 0.15 mm (based on the Jenkinson method; Jenkinson 
et al. 2002) for the Wisconsin dataset and Stanford dataset. In the 
Leipzig dataset in which four rs-fMRI runs were obtained within 
participants, we removed runs with more than 0.15 mm of mean 
FD, and participants based on the mean across runs. The final 
dataset sizes may be found in Table 1.

In addition, given that FD can influence observed relation-
ships between functional connectivity and behavior (Siegel 
et al. 2017), we controlled for FD in analyses focused on rela-
tionships between functional connectivity and FFMQ scores 
(see Section 2.7).

2.6   |   Functional Connectivity Feature Extraction

For each individual, we extracted the preprocessed BOLD time 
series from the mean across all voxels within each node defined 
based on an intrinsic functional network atlas in MNI space, 
specifically, the Shen atlas of 268 whole-brain regions (Shen 
et al. 2013). This atlas has been frequently used in CPM stud-
ies (e.g., Kucyi et al. 2021; Rosenberg et al. 2015). We computed 
Fisher z-transformed Pearson correlation coefficient of time se-
ries, giving a matrix of functional connectivity values between 
all region pairs. We define region pairs as connections or edges.

2.7   |   Predictive Modeling Analysis

We chose the Wisconsin sample for training as it is the larg-
est of the datasets in this study (Poldrack, Huckins, and 

TABLE 1    |    The number of subjects in each dataset before and after 
head motion removal. We excluded participants with mean overall FD 
of > 0.15 mm (based on the Jenkinson method; Jenkinson et al. 2002) 
for the Wisconsin dataset and Stanford dataset. In the Leipzig dataset in 
which four rs-fMRI runs were obtained within participants, we removed 
runs with more than 0.15 mm of mean FD, and participants based on 
the mean across runs. Please note that controlling for continuous values 
of head motion was also conducted using partial correlations.

Dataset Total subjects
After head 

motion removal

Training: 
Wisconsin

206 188

Test: Leipzig 79 75

Test: Stanford 82 82
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Varoquaux  2020). We performed CPM using publicly avail-
able code (https://​github.​com/​Dynam​icBra​inMind/​CPM_​
CONN). For each participant in the Wisconsin sample, we 
generated model-based predictions of FFMQ or FFMQ sub-
scales based on data from all other included participants, that 
is, leave-one-participant-out cross-validation (LOOCV). In 
each cross-validation fold, we computed the Pearson correla-
tion between each unique edge in the functional connectivity 
matrix (derived from the Shen atlas) and participant FFMQ 
scores. The resulting r values were statistically thresholded at 
p < 0.01 and separated into what is defined as a positive net-
work (edges whose strength indexed higher FFMQ across sub-
jects) and a negative network (edges whose strength indexed 
lower FFMQ scores). Both networks are binary masks. For 
each participant, we summed all r values in the positive net-
work and the negative network, separately. We also calculated 
a single network strength value, the subtraction of negative 
network sums and positive network sums (Hu, Zhang, and 
Feng 2023; Kucyi et al. 2021; Rosenberg et al. 2020). Finally, 
we fit a linear model, based on all participants within the fold, 
of the form:

In order to assess whether predicted versus observed scores in 
LOOCV held-out participants were statistically significant at 
the group level, we generated a distribution of null values. To 
do so, we repeated all of the described CPM procedures, except 
the participant assignments of the FFMQ scores were randomly 
permuted (1000 iterations) to generate null correlation values. 
To compute a p-value, we then calculated the probability of find-
ing a null correlation at or above the true correlation (predicted 
versus observed FFMQ).

We repeated CPM procedures controlling for head motion by 
calculating partial correlations (partialcorr in MATLAB) be-
tween predicted and observed FFMQ. Using these partial cor-
relations, we controlled for head motion, defined as the mean 
FD value per participant. We did not conduct permutations for 
the partial correlation tests because effect sizes were compara-
ble to those obtained in the main analyses. We also controlled 
for participant asthma status by assessing partial correlations. 
Finally, we repeated CPM procedures with 10-fold CV, which is 
a preferred approach for sample sizes > 100 (Poldrack, Huckins, 
and Varoquaux 2020).

2.8   |   Model Selection

We trained models for each of the seven FFMQ scores (Total, 
Total w/o Observe, and five subscales). Models were selected 
for generalizability testing based on an uncorrected p thresh-
old < 0.05 based on the permutation testing (for similar ap-
proaches, see Kim et al. 2023a; Lee et al. 2021). In our predictive 
modelling framework, evidence for the model is evaluated by 
performance on the independent test dataset, not the statistical 
significance in the training dataset (Poldrack, Huckins, and 
Varoquaux 2020; Scheinost et al. 2019). Our main subsequent 
analyses focus only on the selected models. For external vali-
dation analyses assessing generalizability in the other dataset, 
as well as analyses of edge network identities, we computed 

CPM parameters and positive and negative masks based on 
data from all participants in the Wisconsin sample (i.e., a sin-
gle fold).

2.9   |   Validation in Test Samples

We took the selected trained models and applied them on the 
Leipzig resting-state data (averaged across runs, excluding runs 
with head motion, as described previously) and Stanford resting-
state data (excluding participants with head motion). Each func-
tional connectivity matrix was masked with the positive and 
negative masks, and then those FC values from the selected 
edges were either applied independently or summed to form a 
network strength value. The connectivity predictor or network 
strength (dimensionality of one) was then used in the linear 
model to predict the FFMQ scores. We compared FFMQ pre-
dicted and observed values using Pearson's correlation, as well 
as mean squared error where appropriate. We also conducted 
partial correlations controlling for FD values.

2.10   |   Test–Retest Stability

There are some indications that CPM predictions may be more 
reliable and stable than individual edges (Taxali et al. 2021). To 
test this, we leveraged the Leipzig dataset, which had multiple 
15-min runs. We examined Pearson's correlations between the 
CPM network strengths for the first two runs and the last two 
runs. Additionally, we randomly selected 1000 individual edges, 
and estimated the probability of the CPM correlation compared 
to the distribution of random edges.

2.11   |   Analysis of Functional Connectivity 
Patterns Contributing to Mindfulness CPMs

To gain insight into the neuroanatomical patterns that contrib-
uted to the CPMs, we examined brain networks, nodes, and 
regions. The principal measure for display is “degree,” where a 
high degree means that a node/network/region is involved in 
many edges. First, we used the WASHU network labels to assign 
nodes to 10 networks for visualization (Power et al. 2011). The 
WASHU networks consist of SMN: somatomotor network, CO: 
cingular-opercular network, AUD: auditory network, DMN: 
default-mode network, VIS: visual network, FPN: frontopari-
etal network, SAL: salience network, SUB: subcortical network, 
VAN: ventral attention network, and DAN: dorsal attention net-
work. A proportion of the nodes are not assigned to a network. 
Despite this limitation, the WASHU network labels were cho-
sen because they include networks of interest (FPN, DMN, SAL, 
SMN, and VIS). We examined the number of connections within 
each network in matrix plots. Further, we plotted the specific 
node “degrees” on the brain medial and lateral surfaces using 
BioImage Suite (https://​bioim​agesu​iteweb.​github.​io/​webapp/​
connv​iewer.​html). Finally, connectograms were plotted to dis-
play connections between brain regions using BioImage Suite 
(Data S1).

Comparisons of models were assessed, specifically the over-
laps between edges selected by the models. We conducted 

FFMQ = �∗network_strength + c
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non-parametric permutation tests (shuffling the edges) to assess 
whether the degree of overlap was higher than chance.

2.12   |   Comparison to MW CPM

Previous work has identified a connectome-based model that 
predicts mind-wandering ratings within- and across-individuals 
(MW-CPM; Kucyi et al. 2021). As individuals who report higher 
MW may report less mindfulness (Mrazek, Smallwood, and 
Schooler  2012; Mrazek et  al.  2013), we tested whether overall 
network strengths from the MW-CPM model when computed on 
the current datasets correlated with overall network strengths 
from our mindfulness models.

2.13   |   Sensitivity Analyses

We conducted sensitivity analyses to identify whether different 
analysis approaches lead to improvements in generalizability. 
First, we considered whether generalization to datasets acquired 
with a different MRI scanner type may be a high bar. Thus we 
combined the data across scanners before shuffling and con-
ducting an 80–20 training-test split. In one analysis of this com-
bined data, we conducted partial correlations using the means of 
the FFMQ within each dataset to control for dataset differences. 
Second, using the combined data, we examined whether other 
predictive modeling methods previously used in neuroimaging 
applications were more powerful than CPM, including tangent 
parameterization of connectivity, Brain Basis Sets and Elastic 
Net Regression. See Data S1 for Full Methods.

3   |   Results

3.1   |   Behavioral Measures

The mean FFMQ in the Wisconsin sample was 134.8 (SD = 17.8), 
in the Stanford sample 126.8 (SD = 17.4), and the in the Leipzig 
sample 107.2 (SD = 11.3) (Figure  S1). Wisconsin FFMQ scores 
were significantly higher than Stanford scores as assessed by 
a two-tailed Welch's t-test (t(153.46) = 3.50, p < 0.001, Cohen's 
d = 0.44), and Leipzig's (t(221.96) = 15.45, p < 0.001, Cohen's 
d = 1.35). Stanford FFMQ scores were significantly higher 
than Leipzig FFMQ scores (t(139.68) = 8.49, p < 0.001, Cohen's 
d = 1.10). This difference in the trait measures could be related to 
the student sample of the Stanford dataset, or the German trans-
lation of the FFMQ, or cultural differences. FFMQ scores may 
vary across different samples (e.g., Goldberg et  al. 2016; Isbel 
et al. 2020). Correlations between the subscales were significant 
but were all less than r = 0.5, indicating some independence (see 
Table  S1). Subscales correlated with the total FFMQ score, rs 
> 0.6, and showed differences across sites similar to total FFMQ 
score differences (Figures S2 and S3).

3.2   |   Learning the Neural Features From 
the Training Dataset

We trained seven CPMs in the Wisconsin dataset, one for 
each subscale, the total score, and the total without observing. 

Eighteen participants were removed due to above-threshold head 
motion. Full training set performance is reported in Table S2. 
The models predicting AA, and NJ showed positive correlations 
(Figure 1) between overall network strength (positive network—
negative network) and the respective subscale (AA: r(186) = 0.22, 
NJ: r(186) = 0.21). The two models had non-parametric (permu-
tation testing) p values of 0.017 and 0.025, respectively, so we 
selected them for model testing in held out data. When using 10-
fold cross-validation instead of leave-one-out cross-validation 
(LOOCV), the results were similar (AA: r(186) = 0.16, p = 0.046; 
NJ: r(186) = 0.22, p = 0.021). The single-fold AA model, which 
we call the AA-CPM, consisted of 328 positive edges and 758 
negative edges. Positive edges were present in 95.0% of LOOCV 
folds, and negative edges were present in 93.0% of LOOCV 
folds. Partial correlations with framewise-displacement as a 
covariate showed similar effect sizes (r(186) = 0.22), indicating 
no influence of head motion on model prediction. Partial cor-
relations with asthma status likewise resulted in similar effect 
sizes (r(186) = 0.21). The single-fold NJ model, which we call 
the NJ-CPM, consisted of 664 positive edges and 628 negative 
edges. Positive edges were present in 94.3% of LOOCV folds, and 
negative edges were present in 93.6% of LOOCV folds. Partial 
correlations with framewise-displacement and asthma status as 
covariates were similar (rs of 0.21 and 0.19, respectively).

3.3   |   Features in the AA-CPM

We next analyzed the masked edges from the AA model, as de-
rived from a single-fold (Figures 2 and S4). In the positive net-
work, FPN between-network connections were most featured, 
primarily between FPN and sensory networks as well as FPN-
DMN. There were some connections incorporating DMN, SAL, 
and SMN. High-degree brain areas included the cerebellum, pa-
rietal areas, and dorsomedial prefrontal cortex. Circle plots from 
the FPN, in particular, show mostly cross-hemispheric con-
nections between prefrontal, motor areas, parietal areas, and 
limbic areas, with more diverse brain areas in the right hemi-
sphere (Figure S5). The negative network (edges that negatively 
correlated with AA scores) contained connections within the 
SMN, and between the SMN and the VIS network, with some 
involvement of auditory and DMN networks. High degree nodes 
included somatomotor cortices, primary occipital cortices, and 
ventrolateral prefrontal cortex. Circle plots demonstrated dense 
connections across hemispheres between motor, parietal, tem-
poral, visual, and insula areas (Figure S6).

3.4   |   Features in the NJ-CPM

We analyzed the masked edges from the NJ model derived 
from a single fold (Figures 3 and S7). In the positive network, 
DMN connections to the rest of the brain were most featured, 
with some additional connections involving FPN and SUB. 
DMN-SMN and DMN-CO edges were most prevalent. High 
degree brain areas included the ventromedial prefrontal 
cortex, posterior cingulate cortex, and medial somatomotor 
areas. Circle plots of DMN connections show dense connec-
tions between left limbic areas and left motor areas, as well 
as the insula and parietal areas (Figure S8). The negative net-
work (edges that negatively correlated with NJ scores) was 
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widely distributed, with many edges in the SMN network, and 
between VIS and DMN. High degree brain areas included bi-
lateral occipital areas, posterior temporal lobe including tem-
poroparietal junction, and bilateral somatomotor areas. Circle 
plots demonstrated similar connections to the AA-CPM neg-
ative network, with the exception of right subcortical involve-
ment (Figure S9).

3.5   |   Testing Performance of AA-CPM

When we applied the AA-CPM to the Leipzig dataset, we found 
a significant positive association between predicted and ob-
served scores (r(75) = 0.34, p = 0.0025, two participants were 
removed due to head motion, MSE = 38.21) (Figure  4A). The 
association remained significant when partialling out head 
motion (pr(75) = 0.27, p = 0.020). The significant association 
was significant when examining only the negative network 
(r(75) = 0.33, p = 0.0031, MSE = 54.14), but not the positive 

network (r(75) = 0.032, p = 0.78, MSE = 232.96). We found no 
significant relationship between AA-CPM predictions (positive, 
negative, and network strength) and observed AA scores in the 
Stanford dataset (ps > 0.5).

3.6   |   Testing Performance of NJ-CPM

When we applied the NJ-CPM to the Leipzig dataset, we found 
no association between predicted and observed scores (ps > 0.2, 
two participants were removed due to head motion). We found 
a positive relationship between NJ-CPM predictions and ob-
served NJ scores in the Stanford dataset (r(80) = 0.28, p = 0.012, 
MSE = 50.15) (Figure 4B), which was robust to partial correla-
tions of clinical status (r(80) = 0.27, p = 0.013). The positive as-
sociation was still present when just examining the negative 
network (r(80) = 0.27, p = 0.016, MSE = 49.66), but not the posi-
tive network (r(80) = 0.16, p = 0.16, MSE = 89.44). Results were 
identical when partialling out head motion.

FIGURE 1    |    Prediction performance in the training set. (A) Predicted vs. observed values from leave-one-out cross validation, for Acting with 
Awareness subscale. (B) Correlation coefficient (in red) compared to the distribution of null correlation coefficients, for Acting with Awareness sub-
scale. (C) Predicted vs. observed values from leave-one-out cross validation, for Non-judging subscale. (D) Correlation coefficient (in red) compared 
to the distribution of null correlation coefficients, for Non-judging subscale. In plots A and C, grey shading reflects 95% confidence intervals. In plots 
B and D, the mean and standard deviations are shown above the distributions.
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3.7   |   Other Model Validation Steps

3.7.1   |   Relationships Between AA-CPM and NJ-CPM

NJ and AA subscale scores were positively correlated in the 
Wisconsin training dataset (r(204) = 0.36, p < 0.001). In addition, 
there was a strong positive correlation between the AA-CPM 
and the NJ-CPM strengths across all datasets (r(345) = 0.66, 
p < 0.001). Twenty positive edges were shared between the mod-
els (2.02%, non-parametric p < 0.001), and 58 negative edges were 
shared between the models (4.18%, non-parametric p < 0.001). 
To evaluate the specificity of the AA-CPM and NJ-CPM, we 
examined whether they could cross-predict in the held-out 
datasets. The NJ-CPM could predict AA in the Leipzig dataset 
(r(75) = 0.29, p = 0.0089). The AA-CPM trended towards predict-
ing NJ in the Stanford dataset (r(80) = 0.20, p = 0.065). Results 
were similar when just examining the negative networks. As a 

control, we examined whether a non-significant model from the 
Wisconsin dataset (the Observing-CPM), could predict in the 
hold out data. The Observing-CPM did not predict AA in the 
Leipzig dataset (r(75) = 0.098, p = 0.39), nor NJ in the Stanford 
dataset (r(80) = 0.14, p = 0.22).

3.7.2   |   Relationships With MW CPM

Trait mindfulness has been found to be negatively correlated 
with MW on tasks (Belardi et al. 2022; Mrazek, Smallwood, and 
Schooler  2012). We examined the correlation between overall 
network strengths for the AA-CPM and NJ-CPM and a previ-
ously published CPM for MW, the MW-CPM (Kucyi et al. 2021), 
in data from all sites. There was a negative correlation between 
AA-CPM and MW-CPM, (r(345) = −0.22, p < 0.001) (Figure S10), 
as well as between NJ-CPM and MW-CPM (r(345) = −0.25, 

FIGURE 2    |    Edges included in single-fold model of Acting with Awareness subscale of FFMQ using Shen atlas. In red are edges that positively pre-
dict Acting with Awareness. In blue are edges that negatively predict Acting with Awareness. AUD: auditory network, CO: cingular-opercular network, 
DAN: dorsal attention network, DMN: default-mode network, FPN: frontoparietal network, Node degree: number of connections including that node 
(brain area), SAL: salience network, SMN: somatomotor network, SUB: subcortical network, VAN: ventral attention network, VIS: visual network.
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p < 0.001) (Figure  S11). Overlaps between edges for AA-CPM 
versus MW-CPM and NJ-CPM versus MW-CPM were not sig-
nificantly higher than chance (non-parametric p > 0.1). The In 
the held out datasets, MW-CPM negatively predicted NJ in the 
Stanford dataset (r(80) = −0.31, p = 0.0042), and no other predic-
tions were statistically significant (ps > 0.5).

3.7.3   |   Test–Retest Stability

We also examined the test–retest stability of the models in the 
Leipzig dataset, by comparing the network strengths for the 
first two runs to the last two runs using Pearson's correlations. 
The AA-CPM and NJ-CPM showed correlations (r(74) = 0.35, 
r(74) = 0.41) that were not more stable than random edges (non-
parametric ps > 0.5).

3.8   |   Sensitivity Analyses

In the combined, shuffled data, when accounting for score 
differences across sites using partial correlations, a model 
predicting NJ passed our selection threshold (non-parametric 
p = 0.025), which generalized to the held-out dataset 
(r(72) = 0.23, p = 0.05, MSE = 36.84). Generalization was re-
duced and non-significant when removing the 22 Stanford 
individuals with clinical diagnoses (r(68) = 0.20, p = 0.11) al-
though MSE was similar (35.33). No other models passed our 
selection threshold. It should be noted that the network mod-
els for the supplementary NJ model were similar to models 
found in the main NJ-CPM (Figure S12). Results from the tan-
gent parameterization of connectivity, Brain Basis Set regres-
sion, and Elastic Net Regression (Table S3) failed to generalize 
from Wisconsin to other datasets.

FIGURE 3    |    Edges included in single-fold model of Non-judging subscale of FFMQ using Shen atlas. In red are edges that positively predict Non-
judging. In blue are edges that negatively predict Non-judging. Medial views are shown for positive network as high-degree nodes are medial. AUD: 
auditory network, CO: cingular-opercular network, DAN: dorsal attention network, DMN: default-mode network, FPN: frontoparietal network, Node 
degree: number of connections including that node (brain area), SAL: salience network, SMN: somatomotor network, SUB: subcortical network, 
VAN: ventral attention network, VIS: visual network.
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4   |   Discussion

We used connectome-based predictive modeling (CPM) to inves-
tigate the relationships between trait mindfulness as measured 
by FFMQ, and functional networks across the whole brain 
(including the DMN, FPN, and SN) and assessed whether the 
relationships generalized to independent samples. Predictive 
modelling of functional connectivity networks has been used 
to predict meditation expertise (in 12 meditators; Guidotti 
et al. 2023), and distinguish participants before and after medi-
tation training (in 25 undergraduates; Tang et al. 2017), but had 
previously not been applied to trait mindfulness. With 367 par-
ticipants over three sites, this is the largest neuroimaging study 
of trait mindfulness to-date (Treves, Pichappan, et  al.  2024). 
While we did not find a generalizable model of total FFMQ 
scores, we did find models of the AA and NJ subscales that gen-
eralized to one of two independent datasets. The models showed 
highly similar negative networks (i.e., increasing connectiv-
ity negatively predicts mindfulness) involving DMN, VIS, and 
SMN connectivity, and these negative networks were responsi-
ble for generalization performance. Our findings highlight the 
importance of networks not investigated previously (e.g., VIS 
and SMN) (Treves, Pichappan, et al. 2024), inform new frame-
works for defining trait mindfulness (Altgassen, Geiger, and 
Wilhelm  2023), and underscore the difficulty of using neuro-
imaging measures for predicting individual differences (Marek 
et al. 2022).

4.1   |   Networks Implicated in Trait Mindfulness

Previous studies on trait mindfulness have focused on seed-
based analysis of the triple networks: the DMN, FPN, and SN. 
A large cognitive neuroscience literature has implicated these 
networks in the regulation of external and internal attention 
(Buckner and DiNicola  2019; Menon  2011). In keeping with 

this, meta-analytic reviews have found that mindfulness in-
terventions lead to increases in DMN-SN connectivity (Rahrig 
et al. 2022) and mindfulness practice (focused attention) leads to 
decreased activations in DMN regions like the posterior cingu-
late cortex compared to control conditions (Ganesan et al. 2022). 
Despite this, there is no consensus with regards to the networks' 
relationships to trait mindfulness. There are some indications 
of triple network involvement in predicting trait mindfulness 
in the current study. The predictive models developed here con-
sist of positive networks (connectivity that predicts higher trait 
mindfulness) and negative networks (connectivity that predicts 
lower trait mindfulness). It is important to note that the mod-
els consist of hundreds of edges across the entire brain and here 
we summarize notable networks and regions. The positive net-
work for the AA model included connections between FPN and 
other brain networks including sensory networks and DMN, 
with high-degree nodes (regions involved in many connections) 
in the cerebellum, dorsomedial prefrontal cortex, and parietal 
cortex. FPN connectivity could be related to top-down regula-
tion of attention (Marek and Dosenbach 2018), and individuals 
who score high on AA may regulate their attention using the 
FPN. However, this connectivity did not generalize to predict 
scores in the test datasets. Instead, connections involving the 
DMN, SMN, and VIS networks negatively predicted mindful-
ness scores (both AA and NJ) in the training and test datasets 
(and under different training-test splits of the data). Decreases 
in DMN connectivity with the rest of the brain could reflect 
differences in habitual self-referential processing, for example, 
rumination (Butterfield, Grad-Freilich, and Silk  2023; Frewen 
et  al.  2020; Raichle et  al.  2001; Zhou et  al.  2020). The soma-
tomotor (SMN) network has been implicated in MW (Kucyi 
et  al.  2024; Mckeown et  al.  2020; Vatansever et  al.  2019). 
Speculatively, altered SMN connectivity may reflect differ-
ent habitual processing of afferent thermo-ceptive, proprio-
ceptive or even pain signals, or it may reflect simulated motor 
action (Sormaz et  al.  2018). Associations with visual network 

FIGURE 4    |    Test predictions vs. Actual scores. (A) Leipzig held-out data prediction performance, for AA-CPM predicting AA scores. Blue line is 
linear best fit, with gray 95% confidence intervals. (B) Stanford held-out data prediction performance, for NJ-CPM predicting NJ scores. Blue line is 
linear best fit, with gray 95% confidence intervals.
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connectivity may reflect differences in sensory awareness, and 
visual network connectivity has been observed to change after 
mindfulness training (Kilpatrick et al. 2011).

Evidence that the models capture meaningful neural function 
is that they were significantly negatively correlated with a well-
established CPM (Kucyi et al. 2021). This is despite not involving 
the same brain connections. The MW CPM model was trained 
on self-reported attention lapses during a task, and generalized 
to predict trait MW in additional samples. Individuals high in 
mindfulness may show reduced attentional lapses, for exam-
ple, participants rating high on mindfulness questionnaires 
mind-wander less (Mrazek, Smallwood, and Schooler  2012). 
Perhaps the mindfulness CPM models developed here could 
predict mindful states as well as traits. Future studies should 
explore MW and mindfulness and their relationships (Vago and 
Zeidan 2016) to brain measures in the same samples.

4.2   |   Distinctions Between Mindfulness Scales

The models that met our selection threshold in the training data-
set were trained on AA and NJ. These two facets of mindfulness 
make up attitudinal and attentional components of mindfulness 
(Rau and Williams 2016) and are common in survey instruments 
measuring mindfulness (Altgassen, Geiger, and Wilhelm 2023). 
The AA subscale of the FFMQ is typically thought to reflect 
an attentional component of mindfulness (Baer et al. 2006). It 
involves questions from the MAAS (Brown and Ryan  2003), 
including “It seems I am running on automatic without much 
awareness of what I'm doing” (reverse-coded). A network anal-
ysis found that AA clusters with the MAAS, MW question-
naires, and cognitive failures questionnaires (Beloborodova and 
Brown  2023). Finally, scores on AA, and the MAAS, respec-
tively, correlate with objective behavioral measures of attention 
(Ching and Lim 2023; Mrazek, Smallwood, and Schooler 2012). 
Our study provides more external validation of self-report mind-
ful attention by identifying resting-state connections across the 
whole brain that predicted AA scores.

The NJ subscale of the FFMQ is typically thought to reflect af-
fective components of mindfulness, specifically one's tendency 
to become aware of thoughts and feelings without judgement 
(Baer et  al.  2006). An example item is “I criticize myself for 
having irrational or inappropriate emotions” (reverse coded). 
Correlations between positive mental health outcomes and NJ 
are often found (Blanke, Riediger, and Brose  2018; Cortazar 
and Calvete  2019; Treves et  al.  2023). One theorized link is 
through decreased rumination (Greco, Baer, and Smith  2011), 
or perseverating on negative self-referential thoughts, memo-
ries, and one's own negative mood (Mennin and Fresco  2013; 
Nolen-Hoeksema 1991).

One area of uncertainty highlighted by the current study is 
whether AA and NJ are distinct or whether they correspond to a 
single ontological concept of mindfulness. Standard definitions 
of mindfulness often unite attentional and attitudinal features 
of mindfulness, for example, mindfulness is a present-focused 
attention, with an orientation of acceptance and non-judgement 
(Bishop et  al.  2004). Empirically however, this unity may not 
be supported. More recent research on self-report mindfulness 

has indicated that single-factor definitions of mindfulness 
may be neither accurate nor predictive of real-world outcomes 
(Altgassen, Geiger, and Wilhelm  2023; Bednar, Voracek, and 
Tran 2020; Beloborodova and Brown 2023; Tran, Wasserbauer, 
and Voracek 2020). Our study contributes to this debate but does 
not resolve it. In the large training sample, there were discrim-
inable brain connections (e.g., FPN vs. DMN) that positively 
predicted AA and NJ. However, the brain connections that pre-
dicted these subscales in the relatively smaller held-out datasets 
were largely overlapping. It may be that large datasets are nec-
essary to identify their distinctions neurally. It is also unclear 
why other subscales and the total FFMQ scores were not pre-
dictable. One possibility is that the shared variance between AA 
and NJ may be more predictable neurally than the FFMQ total 
scores which combine across 39 distinct items. Subscales like 
Observing are sometimes left out from measurement because 
they are understood differently by different populations (Baer, 
Gu, and Strauss 2022; Gu et al. 2016; Pang and Ruch 2019). An 
important consideration is that introspective ability confounds 
self-reported mindfulness measurement (Grossman 2011), and 
more recent research has attempted to control for the reliabil-
ity of responders before conducting correlations with functional 
neuroimaging measures (Kim et al. 2023b). To summarize, our 
results speak to the possibility of different operationalizations of 
mindfulness measurement—operationalizations for insight into 
self-reported experiences may differ from operationalizations 
that align with objective measurement.

4.3   |   Limitations and the Difficulty of Individual 
Differences in Neuroimaging Research

We did not find complete model generalization. The negative 
network models (involving DMN, SMN, and VIS) predicted AA 
in the Leipzig dataset, and NJ in the Stanford dataset. One possi-
bility is that the cross-site differences were a barrier to general-
ization. The data acquisition parameters varied from site to site. 
Scanner parameters have an impact on activations and connec-
tivity estimates (Friedman et al. 2008; Glover et al. 2012; Greve 
et al. 2013). In addition, the trait mindfulness scores varied sig-
nificantly from site to site, and the connectivity features that 
predict mindfulness in one range of scores may not generalize 
to another range. It is unclear whether overall score differences 
between sites reflect real individual differences (Assumption 1) 
or noise (Assumption 2) (in which case they should be controlled 
for). In exploratory analyses, we tested the robustness of our 
models to this assumption, and even using partial correlations to 
control for score differences, the model predicting NJ still passed 
our selection threshold in the training set and generalized to the 
test split.

A second limitation concerns the reliability/stability of the 
CPM measures. A previous study found that when examining 
split-halves of a 30-min resting-state scan, CPM networks were 
more reliable than individual edges (although edges showed a 
wide range of reliabilities with many exceeding that of CPM) 
(Taxali et al. 2021). We did not find this to be the case in our 
study. Reliability puts an upper limit on correlations between 
outcomes (Dubois and Adolphs  2016; Nunnally Jr  1970), and 
could have limited our ability to find meaningful relationships 
herein. In a recent study on dynamic functional connectivity, 
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we found that only the most reliable brain measures showed sig-
nificant relationships with trait mindfulness (Treves, Marusak, 
et al. 2024).

The predictive modeling results present some concerns as well. 
In addition to CPM, we conducted elastic net regression, Brain 
Basis Set regression, and a different connectivity parameter-
ization (tangent-space covariance). Although in the Wisconsin 
model-training dataset the AA and NJ models showed signifi-
cant correlations, these alternative predictive models did not 
generalize to the test datasets (nor did models for the other sub-
scales). Our finding that only the CPM approach generalized to 
independent data highlights the sensitivity of the method while 
also suggesting some fragility of the brain–behavior relation-
ships. An important caveat of the methods used in our study is 
that they do not involve any priors over the features used for 
prediction (a different approach is the network-based statistics 
prediction toolbox [NBS-Predict], which is biased towards find-
ing connected sets of features; Serin et al. 2021).

A final limitation reflects the real-world implications of these 
findings. Even though we combined connections across the 
whole brain for prediction, the amount of variance explained 
was low (~4%). This means that using the models for clinical 
prediction may not be feasible. This has been proposed to be a 
limitation of neuroimaging, not the models nor specific mea-
sures (Marek et al. 2022). Indeed, in the context of classifying 
individuals with depression, Winter et al. (2024) used multiple 
modalities of neuroimaging and tested millions of predictive 
models (with varying hyperparameters), showing a maximum 
accuracy of 62%. One source of this difficulty may be between-
individual variation in neural substrates. It may be the case that 
fMRI measures of functional connectivity are more powerful 
for predicting within-individual variation, for example, fluctua-
tions related to cognition, sleep, or arousal (Flournoy et al. 2024; 
Kucyi et al. 2024) or states of mindfulness versus inattentiveness 
(Weng et al. 2020).

4.4   |   Future Directions

Throughout our analyses, we explored the role of participant-
level factors in the model performance. There were small in-
dications that diversity of participant populations affected our 
results. The Stanford testing dataset contained some individu-
als with anxiety and depression, and a supplementary sensitiv-
ity analysis showed that they were important for the NJ model's 
generalizability (but did not affect the main preregistered 
analyses). Some research has suggested that fMRI predictive 
models are not robust to participant diversity (Ellwood-lowe, 
Whit, and Bunge  2021; Greene et  al.  2022). In this case, as 
mindfulness is correlated negatively with depression and anx-
iety (Carpenter et  al.  2019; Tomlinson et  al.  2018), including 
these “diverse” participants may actually improve performance 
by widening the range of trait scores and brain function. Future 
studies could analyze common self-report structure across anx-
iety, depression, and mindfulness scores before assessing brain 
relationships. Large-sample studies should employ full mea-
surement and reporting of the effects of participant cultural 
backgrounds, diagnoses, and development on brain–behavior 
relationships.

5   |   Conclusion

We conducted the largest neuroimaging study of trait mindful-
ness to-date, with three independent fMRI datasets constituting 
367 participants. We have demonstrated that subscales of trait 
mindfulness are to some degree represented within common 
whole-brain patterns at rest. Future work could examine the dis-
criminability of the brain representations and their malleability 
to mindfulness training.
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