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Older and younger adults performed a state-based decision-making task while undergoing functional MRI
(fMRI). We proposed that younger adults would be more prone to base their decisions on expected value
comparisons, but that older adults would bemore reactive decision-makers whowould act in response to recent
changes in rewards or states, rather than on a comparison of expected values. To test this we regressed BOLD
activation on two measures from a sophisticated reinforcement learning (RL) model. A value-based regressor
was computed by subtracting the immediate value of the selected alternative from its long-term value. The
other regressor was a state-change uncertainty signal that served as a proxy for whether the participant's state
improved or declined, relative to the previous trial. Younger adults' activation was modulated by the value-
based regressor in ventral striatal andmedial PFC regions implicated in reinforcement learning. Older adults' ac-
tivationwasmodulated by state-change uncertainty signals in right dorsolateral PFC, and activation in this region
was associatedwith improved performance in the task. This suggests that older adults may depart from standard
expected-value based strategies and recruit lateral PFC regions to engage in reactive decision-making strategies.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Aging
Decision-making
fMRI
Reinforcement learning
Computational modeling
Introduction

Reward-based decision-making involves selecting from amongmul-
tiple alternatives in order to maximize rewards and/or minimize losses.
Expected value theory is the dominant theory regarding how individ-
ualsmake decisions in reward-based decision-making tasks. This theory
proposes that individuals learn, from feedback, to predictwhich options
will bemore rewarding than others, and that their behavior is guided by
such a comparison (Edwards, 1954; Rangel et al., 2008; Samanez-Larkin
and Knutson, 2015). This representation and comparison of expected
values of alternative choices may be particularly compromised by the
normal aging process.

Recently there has been a surge ofwork aimed at examininghow the
neurobiological, cognitive, and social changes associated with the nor-
mal aging process affect reward-based decision-making (Lighthall
et al., 2014; Maddox et al., 2015; Mata et al., 2011; Mather and
Carstensen, 2005; Samanez-Larkin and Knutson, 2015; Worthy et al.,
2011). Older adults experience age-related declines in the integrity of
y, Texas A&M University, 4235
the mesolimbic dopamine system, and its associated neural structures,
that is critical for tracking and representing expected reward values
(Bäckman et al., 2006; Chowdhury et al., 2013; Li et al., 2001). Another
study demonstrated that decline in the white matter integrity of gluta-
matergic pathways may also impact reward-based decision-making
(Samanez-Larkin et al., 2012). However, despite these declines older
adults often show decision-making behavior that is equally as good as
or even better than younger adults (Worthy et al., 2011, 2015). One
way inwhich older adultsmight compensate for decline in neural struc-
tures that mediate expected-value based decision-making is to use
alternative, heuristic-based strategies that are heavily reliant on recent
outcomes. Several studies have demonstrated older adults' abilities to
be adaptive decision-makers who utilize alternative strategies to
achieve equivalent performance to that of younger adults (Castel
et al., 2012; Mata et al., 2015; Worthy et al., 2011, 2014; Worthy and
Maddox, 2012).

While it is likely that both older and younger adults make decisions
based on the subjective value of each alternative, these subjective values
may be based on different information for younger and older adults.
Younger adults' subjective values may closely correspond to the long-
term expected value of each option. Older adults, however, may base
their subjective values of each alternative on whether the rewards
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they have received for each action were improvements or declines to
rewards received on earlier trials. For example, older adults are more
likely to switch to a different option following steep declines in reward
than younger adults (Worthy et al., 2015), and are more likely to utilize
heuristics such as ‘win-stay-lose-shift’which are solely based onwheth-
er the last outcomewas an improvement or a decline in reward relative
to the previous outcome (Worthy and Maddox, 2012). Older adults are
also more likely to display a ‘model-free’ pattern of decision-making in
the two-step task where they tend to switch following unrewarded tri-
als and stay following rewarded trials regardless of whether transitions
to second stage states were common or rare. Younger adults, however,
are more likely to make decisions based on model-based expected
values of each option (Eppinger et al., 2013b).We propose that this ten-
dency for older adults to use heuristics or to be more adaptive in the
types of strategies they use leads them to be more ‘reactive’ decision-
makers who act in response to recent outcomes rather than based on
a comparison of expected value (Worthy et al., 2015).

Further evidence supporting this assertion comes from a recent
study by Vink and colleagues that found increased activation in reward
related brain regions in younger adults during reward anticipation, but
greater activation in older adults during reward receipt (Vink et al.,
2015). Several other studies have found similar results (Dreher et al.,
2008; Samanez-Larkin et al., 2007, 2010; Schott et al., 2007; Spaniol
et al., 2015). The aging process appears to reduce the tendency for acti-
vation in reward-related regions to shift from reward receipt to reward
anticipation over the course of learning, with older adults responding
more to reward receipt throughout the course of the task than younger
adults (Vink et al., 2015). Rather than basing decisions on a comparison
of the relative expected values of each action, older adults may operate
in amore reactivemanner and base their decisions on the influence that
an action has had on recent changes in state or received rewards. Thus
for older adults, the subjective value of each alternative may be based
on whether selecting each alternative led to improvements or declines
in states or rewards, rather than on expected values derived from
reinforcement-learningmodels.While we acknowledge that our theory
that older adults aremore reactive decision-makers than younger adults
is relatively new, it is nevertheless consistent with recent work demon-
strating an enhanced reliance on recent outcomes for older adults
during decision-making situations.

In the current experiment, older and younger adults performed a
state-based dynamic decision-making task while undergoing MRI. The
task required participants to learn how actions led to either improve-
ment or declines in their future state, which ultimately affected their
long-term cumulative reward. Previous work in our labs suggests that
older adults can perform as well as or better than younger adults in
this task, although they may rely on more reactive, heuristic-based
strategies than on comparing expected values (Worthy et al., 2011,
2014). To test our theory that older and younger adults would base
their decisions on different types of information we regressed the
blood-oxygen-level dependent (BOLD) signal on estimates from a
state-based reinforcement-learning model that we have used in prior
behavioral work (Worthy et al., 2014).

As further detailed below, one regressor we computed was a relative
value component defined as the difference between the state-based and
reward-based value of the action that was selected on each trial. This
served as a proxy for the relative long-term value of each option
compared to the immediate expected value. The second regressor we
computed was a state-change uncertainty signal that represented
whether the prior action led to an improvement or a decline in each
participant's state and how uncertain or unexpected the change in
state was (detailed below). These state-change uncertainty signals
should be very useful in allowing participants to learn which actions
lead to improvements or declines in future states. Based on our theory
that older adults are more reactive decision-makers who base their ac-
tions on recent changes in rewards or states rather than on expected
value comparisons we predicted that BOLD activation in older adults
would be more related to the state-change uncertainty signals com-
pared to younger adults, who would show greater activation related
to the relative long-term value of each option. Based on recent work
highlighting enhanced frontal compensation in older adults we predict-
ed that areas of the dorsolateral prefrontal cortex (DLPFC) would show
enhanced activation related to state-change uncertainty signals, and
furthermore, that this compensatory activation would be related to im-
proved performance in the task (Cabeza et al., 2002; Park and
Reuter-Lorenz, 2009; Reuter-Lorenz and Cappell, 2008).

To test this prediction we performed a region of interest (ROI) anal-
ysis in this region as well as whole-brain analyses. A goal of the analysis
was to determinewhether any state-change uncertainty-weighted acti-
vation in this region was tied to enhanced performance in older adults.
The link between activation and improved performance has been pro-
posed as a way to test whether activation can be considered compensa-
tory (Lighthall et al., 2014). We also predicted that younger adults'
activation would be more strongly tied to the expected value regressor
compared to older adults, particularly in ventral striatal and medial PFC
regions commonly implicated in value-based decision making (Hare
et al., 2008; Rangel et al., 2008; Samanez-Larkin et al., 2014).

Materials and Methods

Participants

Participants from the Austin community and students of the Univer-
sity of Texas at Austin were recruited from alumni mailings, fliers, and
newspaper ads. Eighteen healthy younger adults (mean age 23.61
years, range 18–31; 10 F; mean years of education = 15.64) and eigh-
teen healthy older adults (mean age 67 years, range 61–79; 8 F; mean
years of education = 18.37) were included in this study and compen-
sated with $10/h for their participation. Five additional subjects were
recruited but were excluded from analysis (for non-completion of
study (3), experimenter error (2), and structural abnormalities (1)).
All volunteers gave informed written consent according to procedures
approved by the University of Texas at Austin Internal Review Board.
All volunteers were right-handed native English speakers.

Before completing the study all participants were screened for con-
ditions that prevent them from being in an MRI environment. Partici-
pants were also screened for neurological disorders, drugs known to
influence blood flow and/or cognition. Older adults were administered
a battery of neuropsychological tests (assessing attention, verbal
memory, visual memory, speed, and executive function) in order to
determine whether they were functioning within the normal range for
their age.

Decision making task
Participants performed four 75-trial runs of a two-option state-

based dynamic decision making task where current rewards depended
on past choices (history-dependent; Otto, Markman, Gureckis, & Love,
2010 Fig. 1A; Worthy et al., 2011). On any given experimental trial,
the reward-maximizing option gives higher rewards than the state-max-
imizing option. However, the state participants are in improves as the
state-maximizing option is chosen more frequently (move to the right
on the x-axis in Fig. 1A), whereas the state declines as the reward-
maximizing option is chosen more frequently (move to the left on the
x-axes in Fig. 1A). The number of state-maximizing options selected
was initialized to 5 on the first trial of each run. This guarantees that
all participants start the task at the same point on the reward functions,
and does not bias participants toward one or the other end states (0 or
10 state-maximizing option selections during the past 10 trials). Thus,
reward values for both options depend on how often the state-
maximizing option has been chosen over a window of the last 10 trials.
Each experimental trial lasted for 4 s where participants could select
one of the two options for 2 s followed by a 2 s of feedback. After
every 25 experimental trials there was a 16-second fixation trial.



Fig. 1. a.) Reward structure for the state-maximizing task. Rewards we a function of the
number of times the state maximizing option had been selected over the previous ten
trials. The rewardmaximizing reward led to larger immediate outcomes, but higher states
andmore cumulative reward could be achieved by selecting the state-maximizing option.
b.) Sample screen shot of the experiment.
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A hypothetical scenario was presented where participants selected
one of two oxygen extraction systems on Mars (Fig. 1B). Participants
were told they would repeatedly test the two systems and a bar,
representing a small oxygen tank, would show the amount of oxygen
they had extracted on the current trial. A line on the larger cumulative
tank corresponded to their goal — collecting enough oxygen collected
to complete their mission. In order to reach this goal, participants need-
ed to select the state-maximizing option 80% of the time across four
runs. They were told nothing about the underlying reward structure,
but were required to learn from experience.

Imaging acquisition
T1-weighted scans were collected from each participant using

3 Tesla GE Signa EXCITE MRI equipped with an eight channel phased
array head coil (GE Medical Systems, Milwaukee Wisconsin) at the Uni-
versity of Texas at Austin Imaging Research Center. Head motion was
minimized with foam inserts. Stimuli were viewed using a back projec-
tion screen and a mirror mounted on top of the head coil. MR safe
glasses were provided as needed to correct vision to normal. Responses
were collected with two four-button MR compatible optical transmis-
sion device, one held in each hand.

Functional EPI images were collected using a parallel imaging ap-
proach with GRAPPA reconstruction utilizing whole head coverage
with slice orientation to reduce artifact (approximately 10% grade off
the AC–PC plane, TR = 2 s, TE = 30 ms, 32 axial slices oriented for best
whole head coverage, acquisition voxel size = 3.125 × 3.125 × 3 mm3

with a 0.3 mm inter-slice gap). These parameters were implemented to
optimize coverage of the ventral prefrontal cortex without sacrificing
whole-brain acquisition. The first four EPI volumes were discarded to
allow scans to reach equilibrium. One high-resolution T1-weighted
SPGR structural image (TR, 2.3; TE, 2.0; FOV, 256; matrix, 192 × 192;
sagittal plane; slice thickness, 1 mm; 172 slices) was collected on each
participant for the anatomical co-registration with functional imaging
datasets.

Data analysis

Computational modeling
We fit participants' behavioral data with a HYBRID state-based RL

model, a win-stay-lose-shift (WSLS) model, and a baseline model that
assumed stochastic responding. The RL model assumed that partici-
pants observed the hidden state (s) on each trial and valued options
based on both the probability of reaching a given state on the next
trial (s′) by selecting action a, and on the rewards experienced in each
state. This model is similar to othermodels that have assumed that sub-
jects use state-based information to determine behavior (Gläscher et al.,
2010; Eppinger et al., 2013a,b), and identical to one we have used in
previous behavioral studies (Cooper et al., 2015; Worthy et al., 2014).

The model tracks the reward-based expected values for each action
in each state (QRB(s,a)) using a SARSA learner. On each trial the model
computes the reward prediction error (RPE):

δRPE ¼ r−QMF s; að Þ: ð1Þ

The prediction error is then used to update the expected value for
the current state action pair:

QRB s; að Þ ¼ QRB s; að Þ þαδRPE: ð2Þ

Here α is a free parameter that represents the learning rate for state-
action pairs on each trial. Themodel also has the ability to allow reward
information gained for actions in a specific state to be generalized across
states. For each state other than the state on the current trial (denoted
as s*) the QMF value for the same action selected on the current trial is
updated:

QMF s�; að ÞQMF s�; að Þ þ θ r−QMF s�; að Þð Þ: ð3Þ

Here θ represents the degree to which the rewards received on each
trial are generalized to the same action in different states.

To compute the state-based expected value of each option themodel
first tracks the state-transition probabilities associated with each action
in each state. Following each trial in state s and arriving in state s′ after
having taken action a the model computes a state prediction error
(SPE):

δSPE ¼ 1−T s; a; s0ð Þ: ð4Þ

Next, the model updates the state transition probability:

T s; a; s0ð Þ ¼ T s; a; s0ð Þ þ ηδSPE ð5Þ

Here η is a free parameter that controls the learning rate for the
state-transition probabilities. The state-transition probabilities for all
other states not arrived at (denoted as s″) are reduced according to:

T s; a; s″
� � ¼ T s; a; s″

� � � 1−ηð Þ: ð6Þ
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This ensures that all transition probabilities at a given state sum to 1.
After updating state-transition probabilities and expected reward

value information the model the computes a state-based value for
each action in each state (Q SB(s,a)) using the state-transition probabili-
ties and the maximum estimated model-free reward value in each pos-
sible future state to determine the future value of each action1. In this
task there are three possible states that participants will transition to
on the next trial (s′) following action a on the current trial (stay in the
same state or move up or down one state). We estimated the Q SB

value for each action by the following equation:

Q SB s; að Þ ¼
Xs0 sþ1ð Þ

s0 s−1ð ÞT s; a; s0ð Þ � max QMB s0; a0ð Þ½ �: ð7Þ

This function multiplies the probability of transitioning to each
possible state on the next trial, having taken action a in trial t, by the
maximum expected reward in state s′ for either action.

Themodel then determines a net value for each action (QNet(s,a)) by
taking aweighted average of the state-based and reward-based expected
values:

QNet s; að Þ ¼ ω � QSB s; að Þ þ 1−ωð Þ � QRB s; að Þ ð8Þ

where ω is a free parameter that determines the degree to which
choices are based on the state-based versus reward-based components
of the model.

Finally, the probability of selecting each action is determined using
the Softmax rule:

P a; tð Þ ¼ e β� QNet s;að Þþπ�rep að Þ½ �½
Xn

j¼1
e β� QNet s; jð Þþπ�rep jð Þ½ �½

: ð9Þ

The state-change uncertainty signal thatwe used in our fMRI analysis
was computed for each trial by first comparing the current state to the
state on the previous trial:

SC tð Þ ¼ st−st−1: ð10Þ

This was simply equal to −1, 0, or 1, depending on whether there
was a decline, no change, or an improvement in state after the previous
action. Next, state changes were multiplied by the state-based predic-
tion error from Eq. (1) above to compute the state-change uncertainty
signal (SCU):

SCU tð Þ ¼ SC tð Þ � δSPE: ð11Þ

This signal represents both the direction of the state change experi-
enced from trial t− 1 to trial t aswell as the uncertainty associatedwith
the state-change. Greater magnitude uncertainty signals should be
more informative in updating state-transition probabilities. Note that
this metric is similar to the state prediction error used byGläscher
et al. (2010), but it is a signed version of this metric where the change
in state is multiplied by the state prediction error to represent not
only uncertainty regarding the state transition, but whether the state
transition was positive, neutral, or negative.

Finally, to compare the relative long-term versus immediate value of
each action we simply computed the difference between the state-
based and reward-based values for the chosen option on each trial.

Diff Qð Þ ¼ QSB s; að Þ−QRB s; að Þ ð12Þ
1 Other similarmodels have recursively derived long-termvalues of each action over in-
finite horizons using the Bellman Equation. Here we simply estimated the maximum re-
wards that could be obtained from transitions to each possible future state on the next
trial. This provided an expected reward value that was directly comparable to the
reward-based value provided by the SARSA learner.
This metric was chosen because it allowed us to account for the
difference between the long-term value provided by the state-based
Q-value and the immediate reward value provided by the reward-
based Q-value. It is also a metric that is not affected by the current
state of the participants. Using Qnet values, for example, would be
problematic because those values will be larger when participants are in
a higher state and smaller when participants are in a lower state. This
would reduce such a regressor's ability to track differences in value be-
tween the two options on any trial, regardless of the participants' current
state.

Themodelwas fit to the data individually for each participant. State-
change uncertainty signals (SCU) and relative expected values (Diff(Q))
were computed for each subject by using the average best-fitting pa-
rameter values across all subjects. In addition, we also fit a variant of
the model that did not include a perseveration term (rep(a)). This
model was fit in order to compare its fits with the full model and with
the win-stay-lose-shift model which makes predictions regarding
perseveration and switching, but does not incorporate information
about expected value.

The WSLS model is identical to the model we used in previous pa-
pers from our labs (Worthy et al., 2014; Worthy and Maddox, 2012).
The model has two free parameters. The first parameter represents
the probability of stayingwith the sameoption on the next trial if the re-
ward received on the current trial is equal to or greater than the reward
received on the previous trial:

P ai; tjchoicet−1 ¼ ai&r t−1ð Þ ≥ r t−2ð Þð Þ ¼ P stayjwinð Þ: ð13Þ

In Eq. (13) r represents the reward received on a given trial. The
probability of switching to another option following a win trial is 1 −
P(stay|win).

The second parameter represents the probability of shifting to the
other option on the next trial if the reward received on the current
trial is less than the reward received on the previous trial:

P aj; t
��choicet−1 ¼ ai&r t−1ð Þ b r t−2ð Þ� � ¼ P shiftjlossð Þ: ð14Þ

MRI analysis
FMRI data processingwas carried out using FEAT (FMRI Expert Anal-

ysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.
fmrib.ox.ac.uk/fsl). BET (brain extraction tool) was used to extract the
brain from the image of the skull and surrounding tissue.

Motion correctionwas performedwithMCFLIRT, using a normalized
correlation ratio cost function and linear interpolation. Registrationwas
conducted through a 2-step procedure, whereby the mean EPI image
wasfirst registered to theMPRAGE structural image, and then into stan-
dard space [Montreal Neurological Institute (MNI); avg152 template],
using a correlation ratio cost function and 12-parameter affine transfor-
mation (Jenkinson & Smith, 2001). This process was performed
separately for each imaging run. Statistical analyses were performed
in native space, with the statistical maps normalized to standard space
prior to higher-level analysis.

Whole-brain statistical analysis was performed using a three-level
multi-stage approach to implement a mixed-effects model treating
participants as a random effect.

The first-level regressors of interestwere convolved using trial onset
times with a canonical (double-gamma) hemodynamic response func-
tion as well as their temporal derivative. Additional nuisance variables
included a stimulus presentation regressor that was parametrically
modulated by response time (RT) and single volume regressors to
“scrub” volumes exceeding a framewise displacement threshold of
0.9 mm. A quasi-Poisson regression revealed no differences between
groups in terms of number of scrubbed volumes (t b 1; median younger
adults = 2; median older adults = 1). Time-series statistical analysis
was carried out using generalized least squares in FILM (FMRIB's

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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Table 1
Average AIC values and best-fitting parameters for each model

Younger Older

AIC values
HYBRID RL 267.48 (71.49) 299.56 (87.25)
HYBRID RL — no perseveration 323.31 (98.75) 359.99 (83.61)
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Improved Linear Model) with local autocorrelation correction
(Woolrich, Ripley, Brady, & Smith, 2001) after pre-statistics processing
including spatial smoothing using a full-width-half-maximumGaussian
kernel of 6mm to reduce noise and high pass temporal filtering (Gauss-
ian-weighted least-squares straight line fitting, with sigma = 100.0 s).

We first examined differences in task-related activation between
younger and older adults, as well as task-related activation that was
modulated by response time. In addition, we also conducted an analysis
where state-change uncertainty signals (SCUs) and the difference
between the state-based and reward-based expected value of the
chosen option (Diff(Q)) from the HYBRID RL model presented above
were mean-centered and included as parametric modulators of the
BOLD response on a trial-by-trial basis in the first-level analysis. The
purpose of mean centering is so the interpretation of the unmodulated
regressors remains, “the mean activation during the stimulus” as op-
posed to “mean activation during the stimulus when parametric modu-
lators have a value of 0”, which is less interpretable. Mean centering
does not actually impact the interpretation of themodulated regressors.

First-level, within-run parameter estimates were averaged across
the four functional runs in a second-level, within-participant fixed ef-
fects model. Quality control checks at the second-level found (n = 4,
2 Younger) participants with scan artifacts where run 2 needed to be
excluded and one older adult where run 1 needed to be excluded. The
contrast maps from the second-level were combined into a third,
group-level mixed model that included participant as a random effect.
The third-levelmixedmodel employed a two-stage Bayesian estimation
for the variance components, which included full Markov-chain Monte
Carlo estimation for all near threshold voxels (FSL's FLAME 1&2).
Older adults, younger adults, and older adults versus younger adult
analyses were conducted. Final whole-brain statistical maps were
corrected for cluster extent at the p b 0.05 level using FSL's Gaussian
random field theory-based correction and a cluster-forming threshold
(primary uncorrected threshold) of z N 1.96. The minimum cluster size
to achieve p b 0.05 for Gaussian random field theory corrections de-
pends upon both the primary uncorrected threshold and the observed
spatial smoothness of the data for a given third-level model. The ob-
served spatial smoothness for each Group-level contrast are as follows
(FWHM x, y, z, in voxels): SCUs = 4.72, 4.82, 4.90: Diff(Q) = 4.90,
4.91, 5.12; reaction time = 5.26, 5.36, 5.41; stimulus onset = 5.64,
5.73, 5.90. The resulting minimum cluster sizes were: SCUs = 861;
Diff(Q) = 932; reaction time = 1105; stimulus onset = 1314.

In addition to the whole brain results, we conducted an ROI analysis
on the right dorsolateral prefrontal cortex using an anatomically de-
fined mask of the middle frontal gyrus from the Harvard-Oxford Atlas.
The purpose of the ROI analysis was to examine whether individual
differences in task performance correlated with the degree to which
subjects' DLPFCs tracked the model-based SCU regressor. We also
conducted similar analysis in the ventral striatum for both the SCU
and DiffEV regressors.
WSLS 267.62 (70.63) 296.03 (71.36)
Baseline 332.55 (84.02) 370.48 (75.31)

Parameter estimates
HYBRID RL

State learning rate (η) .26 (.37) .41 (.40)
Reward learning rate (α) .34 (.38) .44 (.41)
Reward generalization rate (θ) .10 (.25) .07 (.23)
Model-based weight (ω) .52 (.47) .57 (.60)
Inverse temperature (β) 1.95 (2.14) .87 (1.46)
Perseveration (π) 2.83 (6.39) 4.53 (5.58)

HYBRID RL no perseveration
State learning rate (η) .29 (.42) .45 (.45)
Reward learning rate (α) .42 (.43) .49 (.45)
Reward generalization rate (θ) .05 (.08) .05 (.08)
Model-based weight (ω) .61 (.47) .66 (.34)
Inverse temperature (β) 1.10 (1.65) .46 (.71)

WSLS
Win-stay probability .81 (.19) .82 (.09)
Lose-shift probability .48 (.14) .47 (.16)
Results

Behavioral results

Fig. 2 shows the average proportion of trials that participants select-
ed the optimal option (the state-maximizing option) in each of the four
75-trial runs. From a mixed (run × age group) ANOVA we observed a
significant effect of run, F(3,105) = 7.52, p b .001, partial η2 = .177.
Participants learned to select the optimal choice more as the task
progressed. There was no effect of age, and no age × run interaction
(both F b 1). Thus, older adults selected the optimal option at the
same rate as younger adults. We also examined average response
times. Younger adults (M = 481 ms, SD = 77 ms) responded signifi-
cantly faster than older adults (M = 608 ms, SD = 148 ms), t(35) =
3.25, p b .01.
Modeling results

We fit each model to each individual data set by maximizing log-
likelihood, and used Akaike's Information Criterion (AIC; Akaike,
1974) to compare the fit of each model. Table 1 lists the average AIC
values and best-fitting parameter values for younger and older adults
for each model. The WSLS and HYBRID-RL models fit the data roughly
equally well, with the RLmodel fitting younger adults' data slightly bet-
ter and theWSLSmodel fitting older adults' data slightly better. The in-
clusion of the perseveration term markedly improved the fit of the RL
model as can be seen by comparing the AIC values of the model with
and without the perseveration term. Accounting for participants' ten-
dencies to perseverate can drastically improve fits of RL models and is
the main reason why the WSLS model can fit data from a variety of
tasks as well as RL models (Worthy et al., 2013a,b).

Following previous work from our lab we examined the degree to
which the WSLS model fit the data better than the RL model that did
not include a perseveration term by subtracting the AIC of the WSLS
model from the AIC of the RL model with no perseveration term. This
is analogous to the comparison we performed in our 2012 paper
where we found greater reliance on the heuristic-based WSLS strategy
in older adults, and greater reliance on an expected value based RL strat-
egy in younger adults (Worthy andMaddox, 2012). Although the differ-
ence was not statistically significant, the relative fit values for theWSLS
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model were larger for older adults (M = 63.96, SD = 74.48) than for
younger adults (M = 55.69, SD = 79.38). This is consistent with other
studies where we have found that younger adults are better fit by
models that rely exclusively on expected value, while older adults are
better fit by models that rely exclusively on whether the most recent
outcome was an improvement or a decline in reward.
Imaging results

Task-related activation
We first examined age differences in task-related activation. The top

of Table 2 lists regions where activation was significantly greater for
younger adults than for older adults. Younger adults showed greater ac-
tivation in regions of the ventral striatum, including caudate, putamen,
and nucleus accumbens, and in the anterior cingulate and frontal pole
while older adults show greater deactivation of themedial orbitofrontal
Table 2

Size (mm3) x y z

Task
YA N OA

Occipital pole 2628 18 −98 10
10,150

R. thalamus 2 −2 4
L. accumbens, L. putamen −12 8 −8
Anterior cingulate 10 40 8
Frontal pole, M. PFC −2 56 6
R. caudate 14 −2 18

RT
YA N OA 35,324

Temporal pole −28 10 −28
Temporal fusiform cortex −30 −46 −22
Superior frontal gyrus 6 32 56
L. thalamus −8 −16 32
Inferior temporal gyrus 44 −16 −32

State-change uncertainty
YA 1660

R. caudate 34 0 18
OA

F. pole 1926 −8 62 12
29,234

Lingual gyrus −2 −86 −8
Occipital pole, occipital fusiform gyrus 8 −88 40
Cuneal cortex 4 −76 34
Caudate, putamen, thalamus −10 −2 10
R. DLPFC 54 16 32

OA N YA 14,811
M. occipital cortex, lingual gyrus 2 −86 −8
L. occipital cortex, occipital pole 6 −70 46
R. DLPFC, precentral gyrus, F. pole 38 22 52

Difference in expected value
YA

R. caudate, thalamus, posterior cingulate 1324 14 −18 24
L lat. OFC, L insula 1724 −28 34 −2
R. occipital Cortex, angular gyrus, 2018 40 −46 28
Supramarginal gyrus
R. DLPFC, R. Lat. OFC 2432 50 30 4
Anterior cingulate cortex, vmPFC 3022 −2 54 18
L. occipital cortex, angular gyrus 3419 −30 −70 28
Lingual gyrus, fusiform gyrus 3829 −2 −68 16

OA
R. precentral gyrus 1028 46 −6 58

YA N OA 8350
L. lateral occipital cortex, −30 −70 28
Fusiform gyrus
L. putamen −26 −24 6
L. superior temporal gyrus −60 −36 2
L middle temporal gyrus
Occipital pole −30 −70 28

Note: R = right, L = left, F = frontal, med. =medial, lat. = lateral, YA= younger adults,
OA = older adults
cortex. Younger adults also showed greater activation in occipital
regions.

RT-modulated activation
Weperformed similar analyses for task related activationmodulated

by RTs. We did not find greater activation for older adults in any brain
regions. Table 2 lists the regions where RT-modulated activation was
greater for older adults than for younger adults. There was greater
activation for younger adults in temporal and occipital regions as well
as in the thalamus and superior frontal gyrus.

State-change uncertainty-related activation
Next we examined activation that was parametrically modulated by

the SCUmeasure from theHYBRIDRLmodel, while adjusting forDiff(Q).
We first examined activation relative to baseline in both younger and
older adults (Fig. 3). In younger adults SCUswere correlatedwith activa-
tion in a few regions of the ventral striatum, as well as the amygdala. In
older adults there were a variety of regions where activation was
parametrically modulated by SCUs, most notably in R. DLPFC, as well as
ventral striatal regions and the frontal pole, in addition to occipital
regions.

When contrasting SCU-related activation between older and younger
adults, older adults showed greater activation than younger adults in the
R. DLPFC and precentral motor regions, and in the frontal pole and
occipital regions. There were no regions where SCU-related activation
was greater for younger adults than for older adults. The greater SCU-
related activation we observed in older adults in the R. DLPFC was a
key prediction we made prior to the study. This region has been associ-
ated with compensatory activation in older adults in prior studies and
may be implicated in comparing one's current state to the state from
the last trial.While this activation differs froma commonpattern of fron-
tal compensationwhere older adults recruit bilateral regions in the same
area that younger adults recruit unilaterally, another test of compensato-
ry activation is whether increased activation in a brain region is associat-
ed with better performance (Lighthall et al., 2014).

To test this we performed a region of interest (ROI) analysis in R.
DLPFC and examined the association between SCU-related activation
and the proportion of optimal choices in the task. This ROI was deter-
mined a priori, and the mean contrast of the SCU parameter estimate
across R. DLPFC was used as our measure of activation. Fig. 4 plots this
relationship for both younger and older adults. The correlation between
SCU-related activation in R. DLPFC and performance was significant in
older adults (r = 0.655, p b .01), but not in younger adults (r = 0.17,
p = .49), however the was not significant across the whole sample,
Fig. 3. State-change uncertainty (SCU) weighted activation for older adults (OA) and
younger adults (YA).



Fig. 4. Scatterplot showing the relationship between the parameter for state-change uncertainty related activation in R. DLPFC and the proportion of state-maximizing choiceswithin older
adults. Greater state-change uncertainty related activation in this region was associated with better decision-making behavior in older adults.

Fig. 5. Scatterplot showing the relationship between the parameter for state-change uncertainty related activation in ventral striatum and the proportion of state-maximizing choices
within older adults. Greater state-change uncertainty related activation in this region was associated with better decision-making behavior in younger adults.
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t(31) = 1.64, p = .11, and the interaction did not reach significance,
t(1.69), p = .10.

Although exploratory, we also conducted an ROI analysis in the
ventral striatum to examine whether there was a correlation between
SCU-related activation and performance in either younger or older
adults. These relationships are plotted in Fig. 5. Despite no age
differences in SCU related activation in this region we found a positive
correlation between performance and SCU-related activation in this re-
gion within younger adults (r = 0.53, p b .05), but not for older adults
(r = 0.07, p= .8). The slope was not significant across the whole sam-
ple, t(31)= 1.64, p= .11 and the interaction did not reach significance,
t(29) = 1.75, p = .09.

Expected value-related activation
We also examined activation that was parametrically modulated by

Diff(Q), defined as the difference between the state-based (long-term)
and reward-based (immediate) value of each option, while controlling
for SCU (Fig. 6). For the comparison to baseline there were a number
of regions where activation was modulated by Diff(Q) within younger
adults, including areas of the ventral striatum, medial and lateral PFC,
as well as occipital regions. In contrast, for older adults we only found
a region in the R. precentral gyrus where activation was modulated by
Diff(Q), and there were no regions where Diff(Q)-related activation
was greater for older adults compared to younger adults. Younger
adults showed greater Diff(Q)-related activation than older adults in
the left putamen, as well as in temporal and occipital regions.

We also conducted an exploratory ROI analysis in the ventral stria-
tum to examine whether Diff(Q) related activation was correlated
with performance. These plots are shown in Fig. 7. Interestingly we
found negative associations between Diff(Q) related activation and
performance for both younger (r = −0.62, p b .01) and older adults
(r = −0.66, p b .01). While this relationship was unexpected and
these analyses were exploratory in nature, one possibility is that the
enhanced Diff(Q) related activation found in low performing older and
younger adults is due to enhanced activation related to overriding the
tendency to maximize immediate reward in favor of the larger delayed
rewards.

Discussion

We examined BOLD activation in older and younger adults while
they were performing a state-based decision-making task that required
attention to both the value of each option and to how selecting each
option caused changes in future states. While younger and older adults
Fig. 6. Difference in expected value (DiffQ) weighted activation for older adults (OA) and
younger adults (YA).
performed the task equally well ourmodel-based fMRI analyses suggest
that these two groups differed in the information that was associated
with activation in specific brain regions during the task. Within older
adults, activation in several regions was parametrically modulated by
state-change uncertainty signals that we derived from a HYBRID RL
model. These signals reflect whether participants experienced an
improvement or a decline in their state, relative to the previous trial,
as well as how uncertain that state-change was. Older adults recruited
R. DLPFC in addition to striatal regions in order to track these state
changes. State-change related activation was significantly greater for
older adults compared to younger adults in R. DLPFC, and our ROI
analysis suggests that greater state-change weighted activation in this
region was associated with superior performance in the task. These
results align with the frontal compensation hypothesis of aging
(Cabeza et al., 2002; Lighthall et al., 2014; Park and Reuter-Lorenz,
2009), although it should be noted that our results differ from prior
work in that we did not observe bilateral recruitment of DLPFC. Howev-
er, many prior studies that have found evidence of age-related frontal
compensation in DLPFC have used basic memory tasks, and the pattern
of age-related compensation may differ for complex decision-making
tasks.

We also observed a positive association within younger adults be-
tween performance and state-change related activation in the ventral
striatum. This is interesting given the lack of a relationship between per-
formance andR. DLPFC activation in younger adults. Onepossibility is that
is heightened activation in the ventral striatum for high-performing
younger adults represents processing of the state-based prediction
error, which aids in learning of the state-based structure of the task and
in the development of state-based expected values. Activity in the ventral
striatum has been associated with both reward-based and state-based
prediction errors in prior work (Daw et al., 2011), and our findings are
in line with these results.

BOLD activation in older adults did not appear to be heavily
modulated by a regressor that estimated the difference between the
state-based and the reward-based expected value for the option
selected on each trial. In contrast, we observed expected-value-related
activation in younger adults in several regions that have consistently
been implicated in reward-based decision-making and reinforcement
learning (Rangel et al., 2008; Samanez-Larkin et al., 2014). However,
it's important to point out that many of the regions where we found
greater expected-value related activation in younger adults were in pari-
etal and posterior brain regions not typically implicated in reward-based
decision-making. Future work should address whether these regions
are commonly recruited in decision-making tasks, in addition to
frontostriatal regions often implicated in reward-based decision-making.

Overall, the results support our hypothesis that older adults are
more reactive decision-makers who base their decisions on responses
to recent events, rather than on a prospective comparison of expected
values associated with each option at the time of choice. This assertion
is supported by recent work in our labs that suggests that older adults
are highly responsive to recent events, and by the current results that
suggests that older adults are responsive to the most recent changes
in their state (Worthy and Maddox, 2012; Worthy et al., 2015). It is
also supported by other neuroimaging studies that show greater
activation during reward receipt for older adults and greater activation
at the time of choice for younger adults (Vink et al., 2015).

Our exploratory ROI analysis of expected value related activation in
the ventral striatum revealed surprising negative associations between
activation and performance for both younger and older adults. While
this relationship was unexpected and these analyses were exploratory
in nature, one possibility is that the enhanced expected value related
activation found in low performing older and younger adults is due to
enhanced activation due to conflict over the immediate and delayed
reward values associated with each option. The greater expected value
related activation for poorer performing younger and older adults
could be due to greater conflict in forgoing the larger immediate



Fig. 7. Scatterplot showing the relationship between the parameter for difference in expected value related activation in ventral striatum and the proportion of state-maximizing choices
within older adults. Greater difference in expected value related activation in this region was associated with poorer decision-making for both younger and older adults.
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rewards provided by the reward-based option in favor of the larger de-
layed rewards provided by the state-based option. While speculative
this type of conflict between immediate and delayed reward could
have also caused the greater expected value related activation in youn-
ger adults compared to older adults, as older adults have shown reduced
delay discounting compared to younger adults (Green et al., 1994).

Alternatively, our relative expected value metric was generally
larger for the state-maximizing option than for the reward maximizing
option. Thus, values were generally higher on this metric when individ-
uals selected the state-maximizing option and lower on trials where indi-
viduals selected the reward-maximizing option. The inverse relationship
between ventral striatum activation related to this regressor and perfor-
mance could be due to higher performing participants having clearer
knowledge that selecting the reward-maximizing option led to larger im-
mediate reward,while selecting the statemaximizing option led to small-
er reward. Thus greater activation in high-performing individuals on trials
where they selected the reward-maximizing option could be due to antic-
ipation of the larger immediate rewards provided by this option (Vink
et al., 2013). However, we urge caution in interpreting these correlations
as we did not have specific a priori predictions about the relationship be-
tween expected value related activation in the ventral striatum and per-
formance, like we did for SCU related activation in DLPFC for older adults.

It's important to note that activation for younger and older adults
was modulated more for certain model-based regressors than for
others. The use of multiple measures from models may be particularly
necessary in aging studies. Given well-documented differences in
strategy use it is important to ensure that an appropriately large
model-space is utilized in order to account for both older and younger
adult behavior. It's also important to note that we observed differences
in age-related brain activity and strategy use despite no differences in
performance in the task. Other researchers have found similar results
and have pointed to older adults compensating for age-related declines
influid intelligencewith enhanced crystallized intelligence learned over
the lifespan (Li et al., 2013). Our results may reflect a similar situation
where older adults compensate for declines in the ability to use expect-
ed value representations to proactively guide decision-making, and in-
stead rely on reactive decision-making strategies where the relative
value of recent outcomes strongly affects the subjective value of each
option on future trials.

The notion that older adults depart from standard reinforcement-
learning based strategies of updating and comparing expected values
is in line with other recent work that demonstrates that neural re-
sponses to reward prediction errors decline with healthy aging
(Chowdhury et al., 2013; Eppinger et al., 2013a; Samanez-Larkin et al.,
2014). The decline in neural responses to reward prediction errors is
likely due to age-related decline in the integrity of the mesolimbic
dopaminergic reward system (Li et al., 2001). These age-related neural
declines likely compromise older adults' ability to update expected
value representations in response to prediction errors, which makes
reinforcement-learning based strategies very in efficient. As a result,
we propose that older adults engage in more parsimonious, reactive-
based strategies akin to win-stay-lose-shift (Cooper et al., 2013;
Worthy et al., 2013a; Worthy and Maddox, 2012). These strategies
utilize recent changes in rewards or states as guides for how to alter
or persist in the same decision-making behavior across trials.

Future work should further test our assertion that healthy aging
causes qualitative shifts in the strategies individuals use to make deci-
sions. Older adults may be particularly prone to poorer decision-
making in situations where actual expected values must be utilized
and compared, andwhere reactive, heuristic-based strategies are not vi-
able. One such situation may be when additional decision alternatives
are added (Frey et al., 2015; Worthy et al., 2014). Older adults perform
more poorly when additional choices are added, and this could be be-
cause heuristic-based strategies such as win-stay-lose-shift are less
effective as more alternatives are added. Older adults may also
underperform when asked to provide expected value predictions or
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when asked to “pass” or “play” a pre-selected choice (Cauffman et al.,
2010). Those types of situations would require accurate expected
value representations and would not allow older adults to rely on
recency-biased heuristics. Understanding the qualitative differences in
the types of decision-making strategies older and younger adults utilize
is critical for developingways to assist older adults in important person-
al, work-related and financial decisions, and for determining when
decision-making may be compromised by age. Such an understanding
is becoming increasingly important as older adults continue to make
up a larger segment of the population in developed nations, and contin-
ue to make many important decisions on a daily basis.

Limitations

There are a few limitations to note for this study. First, we did not
explicitly assess possible differences in IQ and we only conducted
cognitive testing for our older adult sample. We also did not specifically
screen for mental or physical illnesses other than ones that would
preclude participation in fMRI studies. This study also focused only on
older and younger adults and did not include data from participants in
themidsection of the adult lifespan. This makes it difficult to determine
preciselywhen the changeswe observed occurred, particularlywhether
the shift from theuse of proactive to reactive decision-making strategies
steadily occurs over the course of the adult's lifespan or whether the
shift occurs abruptly near the end of middle age. Park and colleagues
have presented a compelling data set that suggests that visuospatial
and verbal memory abilities steadily decline over the course of the
lifespan (Park et al., 2002). Thus, one possibility is that the ability to
utilize past information to update expected value representations that
are utilized at the time of choice steadily declines over the course of
the adult lifespan. Future studies should include broader samples of
participants across the lifespan.

Conclusion

We used a combination of behavioral, computational modeling, and
fMRI methods to test our hypothesis that older adults are more reactive
decision makers than younger adults, whose behavior is better
explained by expected value theory. BOLD activation in older adults
more closely aligned with a regressor that tracked recent changes in
state, while activation in younger adults was aligned with a regressor
that tracked the difference between long-term and immediate expected
value. Future work should continue to examine whether older and
younger adults exhibit qualitative differences in how they utilize infor-
mation about rewards and states to make decisions. A strong character-
ization of these differences will be extremely useful in predicting and
improving decision-making behavior across the lifespan.
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