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Long-term neural and physiological phenotyping
of a single human
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Psychiatric disorders are characterized by major fluctuations in psychological function over

the course of weeks and months, but the dynamic characteristics of brain function over this

timescale in healthy individuals are unknown. Here, as a proof of concept to address this

question, we present the MyConnectome project. An intensive phenome-wide assessment of

a single human was performed over a period of 18 months, including functional and structural

brain connectivity using magnetic resonance imaging, psychological function and physical

health, gene expression and metabolomics. A reproducible analysis workflow is provided,

along with open access to the data and an online browser for results. We demonstrate

dynamic changes in brain connectivity over the timescales of days to months, and relations

between brain connectivity, gene expression and metabolites. This resource can serve as

a testbed to study the joint dynamics of human brain and metabolic function over time,

an approach that is critical for the development of precision medicine strategies for brain

disorders.
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T
he dynamics of human brain function are increasingly well
understood at the short timescale of seconds/minutes (for
example, through studies of learning) and the long timescale

of years/decades (for example, through studies of development and
ageing), but almost nothing is known about how the human brain
function varies across the range of days to months. This is a critical
gap, because major psychiatric disorders show large fluctuations in
brain function over this timescale1. However, the kind of dense
longitudinal phenotyping that is necessary to understand this
question is extremely challenging with healthy human volunteers,
who are unlikely to be sufficiently motivated to sustain frequent
participation in a study over a long period. For this reason, the
participation of motivated experimenters can be uniquely useful
for demanding longitudinal studies (cf. ref. 2).

We investigated the long-range dynamics of brain function and
their relation to a broad set of psychological and biological
variables in a single healthy human (author R.A.P.) over the course
of 532 days (along with several follow-up visits), representing one
of the most intensive biological characterizations of a single
individual ever performed (referred to hereafter as the MyCon-
nectome study). An overview of the study timeline and analysis
pipeline is presented in Fig. 1, and a description of the available
data types is presented in Table 1. The study was designed to
measure the broadest possible range of human phenotypes (the
‘phenome’3,4) to allow the widespread assessment of relations
between psychological, neural and metabolic function.

The results of the present study demonstrate that healthy brain
function shows rich dynamics over the course of 18 months, and
that these dynamics are paralleled by ongoing fluctuations in
psychological and physiological function as observed in beha-
viour, gene expression and metabolomic measurements. These
findings provide a proof of concept for the dynamic longitudinal
phenotyping of individuals, which we propose will be crucial to

gain a better understanding of the substantial fluctuations in
psychological and neural function in individuals with major
psychiatric disorders.

Given its size and complexity, this data set serves as an
outstanding testbed for open and reproducible scientific practices
in a large-scale context. Code, data, quality assurance results and a
viewer for detailed results of all statistical analyses reported here
are accessible at http://myconnectome.org/wp/data-sharing/ (this
will be made public upon publication). A Python package
(available at https://github.com/poldrack/myconnectome/) has
been created that allows one to automatically download the data
and reproduce the statistical analyses reported here on one’s own
computer; the analyses take less than 5 h on most computers. We
have also provided a fully configured virtual machine that will
allow users to run the entire set of analyses on their own computer
and visualize the results with minimal set-up (https://github.com/
poldrack/myconnectome-vm); see Methods for instructions. Some
of preprocessing operations for imaging and genomic data
required high-performance computing systems due to their scale
and are not included in this workflow, but the code is made
available. The complete imaging, genomic and behavioural data are
made openly available with no restrictions on access/usage or
requirements for authorship.

Results
Dynamics of functional connectivity. Functional, structural and
diffusion magnetic resonance imaging (MRI) were used to quantify
structural and functional brain connectivity. Of these, the most
densely collected measurement was resting-state functional MRI
(rsfMRI), which is increasingly recognized as reflecting an
underlying organization of brain function5,6 (Fig. 1). There were 84
usable 10-min rsfMRI runs during the study, which were acquired
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Figure 1 | Overview of the MyConnectome study design and analysis pipelines. Top: a timeline of measurements obtained in the study for fMRI,

behavioural measurements and blood samples. Each tick represents a single measurement. Middle: an overview of the resting-state fMRI analysis pipeline.

Bottom: an overview of the RNA-sequencing pipeline.
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at consistent times of the day, controlled to minimize effects of
time of day. In addition, an extensive set of data was collected in a
single follow-up session under both eyes-open and eyes-closed
conditions.

Detailed analyses of the rsfMRI data are reported in Laumann
et al.7; the additional analyses reported here used the same
preprocessing operations. The rsfMRI data were first sampled
onto the cortical surface reconstructed from anatomical images,
and then parcellated to identify functionally coherent cortical
regions6. These parcellations were found to be highly reliable
across subsets of data7. The mean time course from each of these
regions was extracted and used to compute a ‘parcellated
connectome’, reflecting regional functional connectivity across
the entire brain (Fig. 2). The community structure of the
parcellated connectome was identified using Infomap clustering
across sessions to generate a consensus clustering8. To further
reduce the dimensionality of the data, mean within-network and
between-network connectivity was computed for each of these 12
networks, providing summary measures of the functional
integration within and between each network.

Analysis of within-network connectivity over the course of the
study (detailed in ref. 7) showed that visual, somatomotor and
dorsal attention networks exhibited the greatest degree of
variability across sessions. This finding contrasts with results
from studies of between-subject variability in connectivity, which
have found that primary sensory and motor regions show the
least variability across individuals9. Time-series modelling of
within-network connectivity showed that most networks were
largely stable over the 18-month time frame. However,
connectivity within primary sensorimotor regions and attention
networks showed either linear increases (second visual network)
or polynomial trends (V1þ , somatomotor, dorsal and ventral
attention) over the course of the study (Fig. 3). These results
suggest the presence of heretofore undiscovered long-range
dynamics in brain connectivity; the source of these dynamics is
unclear, as they could reflect effects of repeated measurement
such as habituation or sensitization.

We also assessed the long-range temporal dynamics of
connectivity across the entire connectome, by comparing each
session to the mean across all sessions (Fig. 3). There were no
long-range trends in the similarity of each session to the mean,
but there were clear groupings of sessions across time, suggesting

more complex mesoscale dynamics. Graph–theoretic network
metrics were also computed using signed/weighted connectivity
(correlation) matrices derived from the parcellated connectome,
generating measures of functional segregation (modularity) and
functional integration (global efficiency)10 for each session. These
metrics were stable over time, with neither showing significant
linear or polynomial trends.

Effects of food and caffeine on network structure. Because
the subject was fasted and had no caffeine on Tuesdays (owing to
the blood draw immediately after the scan), it is possible
to compare connectivity between the fed/caffeinated state
(on Thursdays) and the fasted/uncaffeinated state from data
collected at the same time of the day (hereafter, we use the terms
‘fed’ and ‘fasted’ to describe these states, which should not be
taken to imply that fasting rather than caffeine restriction is the
primary causal factor). Laumann et al.7 reported initial analyses
of this effect, showing that connectivity differed within and
between somatomotor and dorsal attention networks, with
greater connectivity in the fasted state. Using our time-series
modelling approach, we found significantly greater within-
network connectivity in the fasted state for somatomotor,
dorsal attention and primary visual networks. We also found a
number of significant effects on between-module connectivity,
which largely reflected increased connectivity between those three
networks, as well as decreased connectivity between those
networks and other networks, on fasted days.

To interrogate the network-level effects of this factor, we
generated graphs (after binarizing the correlation matrix at a 1%
density threshold) and examined the differences between these
networks across fed and fasted days (Fig. 4). The networks were
largely similar in their modular structure, centred around core
modules (default, fronto-parietal and cingulo-opercular networks).
However, there was also a substantial degree of reorganization
associated with fed/fasted state; in particular, the fasted state was
associated with the development of a large meta-module incorpor-
ating the somatomotor and second visual networks (blue and red in
Fig. 4). To further investigate how modular communication of
brain networks was affected by food and caffeine, we computed a
measure of the diversity of between-module connections (the
participation index)11 for each parcel in each session. The
participation index was further used to identify the hub structure
of the system, classifying hub nodes as either provincial hubs
(which are strongly connected to other nodes within their module)
and connector hubs (which are strongly connected to nodes in
other modules)12. The hub structure of these networks showed
striking differences (Fig. 4). Nodes in the somatomotor and second
dorsal attention networks (which were not hubs in the fed state)
and nodes in the second visual network (which were connector
hubs in the fed state) transitioned to being provincial hubs during
the fasted state. Conversely, there was an increase in the prevalence
of connector hubs in the fed state for the default mode and
cingulo-opercular networks. These results highlight the importance
of physiological states such as feeding and caffeination when
measuring the structure of complex brain networks.

Task activation and functional connectivity. Across sessions,
five different task activation paradigms were performed a varying
number of times: an n-back task with faces, scenes and Chinese
characters (15 sessions), a dot-motion stop signal task (eight
sessions), an object localizer task with multiple-object classes
(eight sessions), a spatial working-memory localizer (four
sessions) and a language localizer (five sessions). In addition,
we performed a single session of retinotopic visual mapping.
Laumann et al.7 presented evidence for systematic overlap

Table 1 | Description of raw data available for the
MyConnectome project.

Scan type Total Usable

T1-weighted anatomy 21 10
T2-weighted anatomy 16 11
Diffusion-weighted (pair of scans) 19 15
Resting fMRI 100 84
Breath-holding fMRI 18 18*
Task fMRI: n-back 15 15
Task fMRI: dot-motion stop signal 9 8
Task fMRI: object localizer 8 8
Task fMRI: spatial working-memory localizer 4 4
Task fMRI: language localizer 5 5
Retinotopic mapping 1 1
Gradient echo field map 38 34
RNA-sequencing 74 48 48
Metabolomics 48 48

fMRI, functional magnetic resonance imaging.
The ‘total’ column describes total number of scans available, including those from the pilot
period and follow-ups, and those excluded for quality control. The ‘usable’ column describes
number of data files from the final protocol that survived quality control (except for those
marked with an asterisk, which have not yet been subjected to quality control).
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between task activation regions and resting-state parcels,
highlighting the utility of rsfMRI for identification of functional
architecture (cf. ref. 5).

We assessed the relation between task-based connectivity
and resting connectivity using a meta-analytic connectivity-
modelling approach13; mean values for each parcel were
extracted from statistical maps for each of the 237 statistical
contrasts (across all sessions and tasks, except for retinotopy),
and these were then used to generate a connectivity matrix
reflecting the correlation of parcel activation across contrasts.
Connectome-wide connectivity values were moderately correlated
between task and rest (r¼ 0.45). Visualization of the task
connectome (Figs 2 and 6) showed that the strongest
connections were found in the occipital and parietal cortices,
which likely reflects the fact that all of the tasks involved visual
stimulation.

Structural and functional connectivity. Structural connectivity
was assessed using diffusion-weighted imaging, which was
performed in 15 sessions, each of which included two acquisitions
with 30 diffusion directions at two b-values (1,000 and
2,000 smm� 2). An additional follow-up session was performed
using high angular resolution diffusion imaging (HARDI: 75
directions at b¼ 1,500 and b¼ 3,000 smm� 2) to allow more
precise modelling of diffusion orientation distribution functions.
Examination of diffusion orientation maps identified an
idiosyncratic structural feature, wherein a small region of
approximately anterior–posterior-oriented fibre pathways
could be observed within the otherwise left–right-oriented
trajectories of the corpus callosum (Fig. 5). This anomalous
finding suggests that the data set could be particularly useful for
testing methods for the modelling of complex interdigitated white
matter structures.
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Figure 2 | Connectome-wide connectivity across methods. Parcellated connectome matrices for (a) full correlation, (b) L2-regularized partial correlation,

(c) meta-analytic task connectivity modelling and (d) diffusion tractography (binarized). Networks are sorted by network modules identified from the full

correlation connectome. Module labels: none: unassigned, DMN:default mode network, V2: second visual network, FP1: fronto-parietal network, V1: primary
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Tractography was computed on diffusion data combined
across 14 diffusion acquisitions, using the resting-state parcels
as seed regions to obtain parcellated structural connectomes
analogous to those computed for rsfMRI. These connectomes
were compared to assess the relation between structural and
functional connectivity; after thresholding at a range of network

densities, we assessed the proportion of edges present in the
functional connectivity matrix that also had non-zero structural
connectivity (diffusion data were thresholded at 10% density to
remove weak connections). This proportion decreased as the
density increased, showing that the strongest functional connec-
tions were also the most likely to be associated with a structural
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connection, though the relationship was only moderately strong
for full (Pearson) correlation (Fig. 6a). To further assess
the relation between structural connectivity and functional
connectivity, we compared the structural connectome to a
partial correlation-based functional connectome, under the
assumption that partial correlation should remove the effects
of indirect functional connections14. Regularized partial
correlation measures showed substantially a better match to the

structural connectome compared with full correlation, with L2
regularization performing slightly better than L1 regularization.
Very similar results were obtained using the HARDI data.
The difference between full and partial correlation was
primarily driven by the prevalence of short-range connections
in the partial correlation map (mean distance¼ 17.6mm)
versus the full correlation map (mean distance¼ 43.4mm)
(Fig. 6c). In particular, diffusion tractography failed to identify
interhemispheric connections; a comparison of the proportion of
interhemispheric connections at varying connectome densities
showed much lower prevalence of interhemispheric connections
for diffusion compared with all other measures (Fig. 6b,c).

It is important to recognize that there are fundamental limits on
the ability of diffusion tractography to accurately estimate
anatomical connectivity15,16, which may contribute to the
considerable number of partial correlations with no measured
structural connection according to diffusion. Further, the promise
of partial correlations ultimately requires that they do not violate
known anatomical connectivity (for example, a strong partial
correlation between regions for which it is known there are no
direct anatomical connections), which has not been exhaustively
tested here. However, the present results represent early evidence
that there is a systematic relationship between structural
connectivity as measured using diffusion imaging and functional
connectivity measured using partial correlation at a connectome-
wide level. These observations highlight the utility of this highly
sampled data set to assess fundamental questions about the
relations between structural and functional connectivity.

Dynamics of gene expression. Previous work has shown that the
assessment of ongoing fluctuations in physiology can provide
insights into the dynamics of human health2,17, and substantial
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evidence suggests that brain function may be directly related to
these physiological states. For example, manipulations of the
peripheral immune system can directly modulate social
behaviour18, and inflammatory cytokines have been implicated
in mood disorders19. Conversely, cognitive manipulations can
modulate physiological responses to foods20, and psychological
stress directly affects immune function21.

To assess physiological variability and its relation to changes in
neural and psychological function, we collected whole blood on
48 occasions immediately following an MRI scan. Transcription
profiling was performed on RNA extracted from peripheral blood
mononuclear cells (PBMCs) to assess gene expression across the
whole genome. RNA libraries were prepared according to ref. 22
and RNA sequencing was performed using an Illumina HiSeq
2500, obtaining a mean of 33.58 million reads per session (range
14.9–54.0 million). After alignment to the hg19 reference genome,
transcripts were mapped to genes and per-gene read counts were
obtained for 23,715 genes. Read counts were normalized for
library size, and a variance-stabilizing transform was applied for
subsequent analysis; after filtering for expression levels (mean44
reads per session) and removing small RNAs, 13,072 genes
remained in the analysis set.

To further assess the validity of the gene expression data, we
compared them with a similar publicly available RNA-seq data set
obtained from PBMCs by Snyder et al. (http://snyderome.stan-
ford.edu/)2. The Snyderome data were processed using the same
analysis pipeline, resulting in 15,579 genes passing expression
thresholds, of which 13,030 overlapped with the genes in the
filtered MyConnectome set; one session in the Snyderome data
set (Unk03) was excluded due to extreme expression values. The
Spearman correlation for mean expression in overlapping genes
across the two data sets was 0.81, demonstrating good
concordance in overall expression levels between the data sets
despite substantial differences in sample preparation and health
status (the participant in the Snyderome study suffered from
type-II diabetes during part of the study).

Transcriptome data were clustered using weighted gene
coexpression network analysis (WGCNA), a tailored method
for identification of highly coexpressed gene sets23. The resulting
clusters were then functionally annotated to identify enriched
biological pathways and functions using DAVID24, and the first
principal component from each cluster was extracted for further
analyses. The application of WGCNA to the RNA-sequencing
data identified 63 coexpression modules; of these, 32 were
significantly enriched for either specific biological pathways or
gene ontology terms (Supplementary Table 1). The largest
number of modules were associated with pathways involved in
regulation of gene expression (nine modules), immune function
(seven modules) and metabolism (seven modules). Additional
modules were involved in molecular functions (three modules),
signalling pathways (two modules each), cell cycle, development,
DNA repair and protein localization (one module each). Overall
expression in these modules was relatively stable over time,
though several modules showed significant long-range dynamic
changes. Significant linear trends were observed in a number of
unenriched modules along with modules related to transcription
(ME58) and protein localization (ME54), and five unenriched
modules showed significant polynomial trends.

We tested the a priori hypotheses (recorded before data analysis)
that psoriasis severity and mood would be associated with
expression in immune/inflammatory pathways. Psoriasis severity
had a significant negative association with T-cell receptor-related
expression, consistent with the central role of T cells in the
disorder. A strong association was also observed with expression
related to transforming growth factor-b receptors, consistent with a
previous report of association between plasma transforming

growth factor-b concentrations and psoriasis severity25; an
additional weaker association with interleukins was also
observed. Surprisingly, no significant associations were observed
between mood measures and immune system gene expression.

There is a substantial literature relating brain function to
genetic variation between individuals26 as well as work suggesting
that gene expression in peripheral blood may be associated with
psychiatric disorders27, but no work to date has directly examined
relations between peripheral gene expression and brain function.
An analysis of associations between gene expression and brain
functional connectivity identified a number of significant
relationships; there were only a small number of associations
with within-network connectivity (eight associations at qo0.1),
but a number of strong relations with between-network
connectivity (Fig. 7). We are cautious not to interpret the
observed relations as directly reflecting variability in brain gene
expression; rather, we view them as a window into the global
metabolic state of the body, which clearly has important
connections to brain function (which may occur through either
similar or distinct genomic mechanisms).

The gene expression data collected here may also serve as a useful
resource for genetic analyses in other studies by providing a heavily
sampled longitudinal data set for highly reliable gene network
identification. To assess this, we performed an analysis of gene
expression (obtained using microarrays) for a large family study, the
Genetics of Brain Structure and Function (GOBS) study28,29. Using
the expression data from the study, we performed WGCNA after
regressing out principal components of overall expression and
single-nucleotide polymorphisms (to reduce population
stratification effects). In parallel, we used the gene modules
identified using WGCNA on the RNA-sequencing data from the
MyConnectome data set to extract module eigengenes from the
GOBS expression data (after nuisance regression). Univariate
heritability analysis showed that the expression eigengenes
extracted using the MyConnectome gene modules had greater
heritability (61/63 significantly heritable, maximum h2¼ 0.76) than
those extracted using the gene modules obtained from the GOBS
data set (46/55 significantly heritable, maximum h2¼ 0.49), even
though they were identified using a different gene expression
method (RNA-seq versus microarray) on an individual from a
different ethnic background (Caucasian versus Mexican-American).

Metabolomic dynamics. The analysis of metabolites in blood
provides a complementary view of biological dynamics. Variability
in the concentration of small-molecule metabolites (such as fatty
acids, sugars and amino acids) was assessed using metabolomic
profiling of blood serum via gas chromatography time-of-flight
spectrometry. This analysis provided concentrations for 258 com-
pounds, of which 106 were known metabolites. Individual meta-
bolites were clustered using affinity propagation30, a successful
general-purpose clustering algorithm that identifies clusters around
specific exemplars using message passing, adaptively identifying the
number of clusters. The resulting clusters were then functionally
annotated to identify enriched biological pathways, using Impala31,
and the first principal component from each cluster was extracted
for further analyses. Of the 15 clusters identified, eight showed
significant enrichment for biological pathways (at false discovery
rate (FDR) qo0.1) (Supplementary Table 2). These clusters were
primarily centred around pathways involved in glycerophospholipid
biosynthesis (two modules), glucose homeostasis and transport
(three modules) and fatty acid and triacylglycerol processing (three
modules). Linear trends were observed for 7 of the 15 clusters, and
polynomial trends for two clusters.

Metabolomic variables were strongly related to food intake.
Several significant associations were observed for the metabolomic
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clusters, and a large number of significant associations were
observed for individual metabolites. Some of these are biologically
plausible, given the subject’s consistent low-carbohydrate diet, such
as the strong association of bacon intake with concentration of
ketone bodies (acetoacetate and 3-hydroxybutyric acid, along with
cluster 15, which was non-significantly enriched for synthesis and
degradation of ketone bodies).

Phenome-wide analysis. This data set provides a unique platform
to assess relations across a wide range of different biological and
psychological variables. We performed a phenome-wide analysis,

assessing bivariate time-series relations across the entire data set
using a time-series linear regression approach with automated
model order selection32. Table 2 provides a list of the strongest
associations identified across the entire data set, all highly
significant (Bonferroni-corrected Po0.05). These findings are
necessarily exploratory, given the nature of the present study, but
they motivate a set of potential hypotheses that could be
prioritized in subsequent follow-up studies. In particular,
strong relations were seen between connectivity within and
between several resting-state networks (including somatomotor,
fronto-parietal, visual and default mode) and gene expression in a
number of modules as well as concentrations of three amino acids
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(glutamic acid, beta-alanine and aninomalonate). These findings
suggest that further investigation of relations between brain
connectivity and metabolism in a larger sample could provide
novel insights into the biological factors that modulate brain
connectivity.

To visualize the relations across the entire set of variables, we
further generated a ‘phenome-wide network’ (Fig. 8),
which allows a clearer appreciation of the complex web of
relations between the different variable classes. The modular
structure of the network was identified using Infomap clustering,
which revealed a highly modular network (modularity
coefficient¼ 0.70), with modules corresponding to sets of
strongly associated variables mixed across classes. This visualiza-
tion highlights the utility of phenome-wide data sets to draw
insights into complex relations across different types of variables.
For example, one module (yellow) included variables related to
mood, connectivity within a number of brain networks, and
fatigue and fed/fasted state. Another module (red) included
metabolomic modules related to triglyceride degradation and and
fatty acid transport, connectivity within fronto-parietal, cingulo-
opercular and secondary visual networks, and variables related to
sleep quality. This approach provides a novel means to
characterize relationships over time across large sets of disparate
variables.

Discussion
Cognitive neuroscience studies have largely assumed that the
measurement of brain function at a single time point is
representative of the individual more generally. Using the most
intensive longitudinal phenome-wide analysis approach to date,
we have demonstrated the presence of rich temporal dynamics in
brain function related to both psychological and biological
variability, suggesting that the purview of studies of human brain
function can usefully be widened to encompass the study of
temporal variability within individuals. The findings demonstrate
a number of potential relationships between functional brain
connectivity as measured using rsfMRI, self-report measures of

psychological function and physical health, gene expression in
PBMCs and serum metabolites.

Large discovery science analyses such as those reported here
are primarily useful for the generation of new hypotheses. The
results have generated a number of novel associations to be
investigated in future studies, as outlined in Table 2. It is crucial
to note that the analyses reported here reflect only a first pass at
this massive data set, examining a miniscule portion of the space
of possible analyses. Additional detailed analyses of the rsfMRI
data are reported in (ref. 7), and the open sharing of the data will
allow other researchers to examine specific aspects of the data set
in greater depth (such as more detailed examination of specific
brain systems or gene networks). The data described here provide
a basis for power analyses for subsequent longitudinal studies,
which will be critical to test the hypotheses generated by this
study; for example, 80% power for replication of the observed
significant associations between connectivity and gene expression
would require anywhere from 24 to 51 sessions, depending on the
size of the observed effect (absolute correlations ranging from
0.54 to 0.38, respectively).

The use of a self-experimentation approach raises questions
regarding the potential influence of subject expectations on the
behavioural and neural measures, as well as biases in the analysis
and interpretation of the data. Although steps were taken to
minimize this effect (such as avoiding data analysis for the first 6
months of the study), it is impossible to discount these concerns
completely. It is, however, more difficult to discern how subject
expectations could have driven the observed relations between
gene expression, metabolomics and highly derived brain-imaging
measures. On the other hand, given the marked time and effort
commitment required for completion, it is likely that self-
experimentation by a motivated researcher was the only means by
which this proof-of-concept study could have been completed.

This study provides justification for larger efforts to long-
itudinally characterize psychological and brain function with
unbiased samples, particularly with regard to psychiatric
disorders in which there is greatly increased variability in mental
function over the weeks-to-months timescale, for example, see

Table 2 | Significant phenome-wide associations.

X class X variable Y class Y variable r t N P(BF)

behav Alcohol intake (previous evening) fullmetab Butane-2,3-diol 0.792 7.38 40 0.0000
bwcorr Visual-2-visual-1 behav Fatigue (after scan) 0.400 5.10 74 0.0129
bwcorr Visual-2-dorsal attention behav Fatigue (after scan) 0.496 5.06 74 0.0157
bwcorr Visual-1-cingulo-opercular behav Fatigue (after scan) 0.621 6.81 74 0.0000
bwcorr Somatomotor-medial parietal behav TuesThurs 0.532 5.34 72 0.0036
food Cashews fullmetab Glutamine 0.553 5.29 39 0.0048
food Eggs fullmetab N-methylalanine 0.428 5.07 39 0.0152
food Bacon metab C15: no enrichment 0.616 5.80 39 0.0002
food Olives wgcna ME16: no enrichment 0.464 5.88 39 0.0002
fullmetab Glutamic acid bwcorr DMN-visual-1 0.574 4.94 39 0.0293
fullmetab Beta-alanine bwcorr Visual-2-fronto-parietal 0.527 5.17 39 0.0092
fullmetab Aminomalonate bwcorr DMN-somatomotor 0.496 5.27 39 0.0052
immport Antimicrobials bwcorr Salience-cingulo-opercular 0.452 4.84 39 0.0491
metab C13:retinol biosynthesis bwcorr Visual-2-dorsal attention 0.505 4.84 39 0.0497
wgcna ME45:no enrichment bwcorr Visual-2-parieto-occipital 0.353 4.84 39 0.0499
wgcna ME52:protein catabolic process bwcorr Fronto-parietal-somatomotor 0.385 5.13 39 0.0113
wgcna ME60:no enrichment bwcorr Fronto-parietal-somatomotor 0.473 5.83 39 0.0002
wgcna ME28:no enrichment fullmetab Uric acid 0.502 4.93 48 0.0308
wincorr Visual-2 wincorr Somatomotor 0.553 5.98 84 0.0001
wincorr Visual-1 wincorr Somatomotor 0.478 5.22 84 0.0067
wincorr Somatomotor wincorr Visual-1 0.478 4.88 84 0.0414

r, Pearson’s correlation between variables; t, t-statistic from time-series regression; N, number of observations entering analysis; P (BF), Bonferroni-corrected P value.
A listing of the strongest associations between measures across the entire data set, sorted by the X variable class. All tests listed here were significant after the Bonferroni correction for all 38,363 tests.
Variable classes are abbreviated as: wincor, within-network connectivity; bwcorr, between-network connectivity; netdat, graph–theoretic measures on brain connectivity; gene, gene expression modules;
metab, metabolite modules; fullmetab, individual metabolites; behav, behavioural/self-report measures.
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(refs 1,33). The foregoing results suggest that an intensive
phenome-wide analysis approach has the potential to uncover
new aspects of brain function and its relation to metabolism that
could provide important insights into these disorders.

Methods
Some of the data described in this methods section were not included in the present
paper (primarily due to a lack of sufficient time points for longitudinal analysis),
but their descriptions are included for the sake of complete description of the
shared data sets.

Participant. The participant (author R.A.P.) is a right-handed Caucasian male, aged
45 years at the onset of the study. He suffers from plaque psoriasis but is otherwise
generally healthy. The participant has a history of anxiety disorder, but no other
neuropsychiatric disorders. Before initiation of the pilot period, the participant
received a physical examination with a full blood workup (comprehensive metabolic
panel (CMP), complete blood count (CBC) thyroid stimulating hormone (TSH),
erythrocyte sedimentation rate (ESR) and lipid panel) along with tests for HIV and
hepatitis B and C. No significant findings were observed in these tests.

Ethical review. The present study was submitted to the University of Texas Office
of Research Support, which determined that it did not meet the requirements for
human subjects research as defined by the Common Rule (45 CFR 46) or FDA
Regulations (21 CFR 50 and 56), and thus that Institutional Review Board (IRB)
approval was not necessary. Subsequent data collection at Stanford University was
performed under a similar determination, while data collection at Washington
University was collected under an approved IRB protocol.

Study phases. A pilot period began on 25 September 2012. During the pilot phase,
the initial protocol was tested for several weeks. Upon examination of the data and

further discussion with a number of other researchers, several changes were made
to the MRI acquisition during the week of 15 October 2012. The production phase
began on 22 October 2012 (with scan session 13) and ended on 11 March 2014,
with an extended hiatus from 6 March 2013 to 30 April 2013 (further discussed in
the Audiometry section below). Additional data were collected on two later
occasions; an extensive rsfMRI data set was collected at Washington University on
3 April 2015, and a diffusion MRI data set was collected at Stanford University on
15 May 2015.

Sample size. The initial sample target was to collect data for one calendar year,
yielding roughly 100 samples. However, due to travel and the extended hiatus
mentioned above, scanning was extended to obtain sufficient samples. Once the
final target of 100 scanning sessions was reached, the final revised stopping
criterion was to obtain 48 blood draws (since the RNA-sequencing was performed
in batches of six samples), yielding a total of 104 scanning sessions. No time-series
statistical analyses were performed before the determination of this criterion.

Subject blinding. To prevent knowledge of the results from affecting the subject,
the subject was initially blinded to the results of any analyses of the repeated tests.
He had access to the clinical blood work results, and also examined individual MRI
scans for quality control purposes, but was not exposed to any analysis of temporal
changes during the initial period of the study. After the hiatus in March 2013, this
blinding was discontinued and the subject analysed the first set of data collected to
that point. Initial a priori hypotheses were recorded before these analyses.

Imaging procedures. MRI was performed in a fixed schedule, subject to avail-
ability of the participant. Scans were performed at fixed times of the day; Mondays
at 1700 hours, and Tuesdays and Thursdays were performed at 0730 hours. After
the hiatus in March 2013, the Monday sessions were eliminated. Imaging was
performed on a Siemens Skyra 3 T MRI scanner using a 32-channel head coil.
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Parameters described below are for the production phase. The imaging protocols
included the following:

Anatomical MRI. T1- and T2-weighted anatomical images were acquired
using a protocol patterned after the Human Connectome Project34. These data
were collected for 15 Monday afternoon sessions (3 during the pilot phase, 10
during the production phase through 30 April 2013, and a 1-year follow-up
collected on 4 November 2013 (sub090)). T1-weighted data were collected using an
MP-RAGE sequence (sagittal, 256 slices, 0.8mm isotropic resolution, echo time
(TE)¼ 2.14ms, repetition time (TR)¼ 2,400ms, inversion time (TI)¼ 1,000ms,
flip angle¼ 8 degrees, GRAPPA factor¼ 2, 7min 40 s scan time). T2- weighted
data were collected using a T2-SPACE sequence (sagittal, 256 slices, 0.8mm
isotropic resolution, TE¼ 565ms, TR¼ 3,200ms, GRAPPA factor¼ 2, 8min 24 s
scan time).

Diffusion-weighted imaging. Diffusion-weighted imaging data were collected for
19 Tuesday morning sessions (15 during the production phase) through 30 April
2013. In each session, two diffusion-weighted imaging scans were acquired using a
multi-band35 Stejskal–Tanner echo-planar imaging (EPI) sequence, with opposite
(L4R and R4L) gradient readout directions. Two shells of 30 directions each were
acquired (b¼ 1,000 and 2,000 smm� 2), plus four low-b acquisitions interspersed
among the 60 diffusion-weighted images (one every 15 frames). Parameters were
b¼ 1,000/2,000 smm� 2, 1.74 � 1.74� 1.7mm resolution, 72 axial slices, field of
view (FOV)¼ 223mm, 128� 128 matrix, TR¼ 5,000ms, TE¼ 108ms, GRAPPA
factor¼ 2, MB factor¼ 3.

An additional session of HARDI data was collected at Stanford University on 15
May 2015. Data were acquired using 3� slice acceleration with a blipped-CAIPI
shift of FOV/3 and minimum TE (81ms) using a 5/8 partial-k readout with
homodyne reconstruction. Scanner calibrations for RF transmit power can interact
with nonuniform RF power across the head (due to B1 inhomogeneity), resulting
in excessive RF power and thus over-flipping in the centre of the head. To alleviate
this problem, and to keep the peak B1 amplitude under the hardware limit, the
prescribed excitation and refocusing flip angles were set to 77 deg and 160 deg,
respectively36. Seventy-five diffusion-weighted directions were collected at two
b-values (1,500 and 3,000 smm� 2), plus 10 acquisitions with a nominal b-value of
0; each direction was collected twice across runs with opposite (A–P and P–A)
gradient readout directions.

Resting-state fMRI. RSfMRI was performed in 100 scans throughout the data
collection period (89 in the production phase), using a multi-band EPI sequence
(TR¼ 1.16ms, TE¼ 30ms, flip angle¼ 63 degrees (the Ernst angle for grey matter),
voxel size¼ 2.4� 2.4� 2mm, distance factor¼ 20%, 68 slices, oriented 30 degrees
back from AC/PC, 96� 96 matrix, 230mm FOV, MB factor¼ 4, 10:00 scan length).
Starting with session 27 (December 12 2012), the number of slices was changed to 64
because of an update to the multi-band sequence that increased the minimum TR
beyond 1.16 for 68 slices. Acoustic noise cancellation for the resting-state scan was
attempted in each session using the Optoacoustics active noise cancellation system,
but in some runs the system failed to cancel the noise successfully (which was
noted in the scan database). The first minute of acquisition was discarded before
subsequent analyses to exclude fMRI responses evoked by the start of the scan and
the noise-cancelling headphones. Five full production-phase sessions were also
excluded from analysis due to low signal to noise ratio (SNR) that led to poor
registration (identified by visual inspection), resulting in 84 sessions that were
included in analysis.

An additional session of rsfMRI data was collected at Washington University on
3 April 2015 to assess cross-site scanner and sequence effects, as well as the effect of
eyes open versus eyes closed on resting-state networks. The data were collected on
a 3-T TIM TRIO system with a standard (non-multi-band) EPI sequence on a
12-channel coil, with TR¼ 2.5 s and 4-mm isotropic voxels. This data set included
ten 10-min runs of eyes-closed resting-state data and ten 10-min runs of eyes-open
resting-state data (with fixation crosshair).

Field mapping. A dual-gradient echo-field map sequence was acquired with the
same prescription as the functional images. In addition, spin echo field maps were
collected with A–P and P—A phase encoding. Collection of field maps was dis-
continued as of 30 April 2013, resulting in 38 acquisitions.

Task fMRI: n-back. An n-back task was performed using a blocked design, with
a factorial combination of memory load (1 versus 2 back) and stimulus type
(faces, houses and Chinese characters) across blocks. Twenty percent of items were
targets, and 20% were foils. The acquisition sequence was identical to that used for
the rsfMRI scan (acquisition time¼ 8min). Weekly acquisition was performed 15
times across different sessions.

Task fMRI: motion/stop signal. A motion discrimination task with an embedded
stop signal task was performed eight times across different sessions. On each trial, a
moving dot stimulus was presented, with coherence of either upward or downward

motion varying across trials (levels: 0, 10, 30 and 70% coherence). On 25% of trials,
a visual stop signal (change of the fixation cross from white to red) was presented,
at a delay controlled by a 1-up/1-down staircase to ensure 50% stopping
accuracy37. The subject’s task was to perform the motion discrimination as
quickly as possible, but withhold responses when the stop signal occurred. The
MRI acquisition was identical to that used for the rsfMRI scan (acquisition
time¼ 7min 11 s).

Task fMRI: object localizer. A multiple-object localizer (including both cropped
and naturalistic faces, human bodies, human limbs, houses, places, cars, guitars,
words and numbers) was performed eight times (twice each across four sessions);
this task was kindly provided by K. Grill-Spector from Stanford University. Each
stimulus class was presented in 4-s mini-blocks with items presented at 2Hz (eight
items per mini-block). In each run, 12 mini-blocks of each class were presented
along 12 interspersed 4-s fixation blocks (acquisition time: 5min 13 s). Half of the
blocks included a single phase-scrambled image; the subject’s task was to press a
button whenever a phase-scrambled item appeared.

Task fMRI: language localizer. A verbal working-memory localizer38 was
performed five times across separate sessions. In each trial, a string of 12 words
(either a sentence or a string of non-words) was presented sequentially (400ms per
word), followed by a 1-s probe item; the subject’s task was to decide whether the
probe item matched any of the words in the preceding string.

Task fMRI: spatial working-memory localizer. A spatial working-memory
localizer39 was performed four times across separate sessions. On each trial, a 4� 2
spatial grid is presented, and locations in that grid are presented sequentially
(1,000ms per location), followed by a forced-choice probe between two grids, one
of which contained all of the locations presented in the preceding series. In the easy
condition, one location is presented on each presentation, whereas in the hard
condition two locations are presented on each presentation. Twelve 32-s
experimental blocks were interspersed with 4 16-s fixation blocks (acquisition
time¼ 7min 28 s).

Task fMRI: retinotopic mapping. Polar angle (with reference to the vertical
meridian, with the centre of fovea as the origin) was mapped using a flickering
checkerboard wedge (45 degree) that rotated periodically in a counterclockwise
direction through the visual field with a cycle duration of 20 s. As the wedge rotates,
it creates a wave of activation throughout retinotopically organized visual areas,
successively and systematically stimulating portions of each map. In this way, the
entire visual field is represented by a time-dependent pattern of activity across
space. In each fMRI run, the wedge completed 12 cycles of rotation (240 s total).
The acquisition sequence was identical to that used for the rsfMRI scan (acquisition
time¼ 4min).

Breath-holding fMRI. A breath-holding task40 was performed 18 times across
different sessions. Visual cues instructed the subject to breathe in and out every
6.96 s (3.48 s inhale, 3.48 s exhale), followed by a 19.72-s breath hold; all events
were time-locked to image acquisition. The MRI acquisition was identical to that
used for the rsfMRI scan (acquisition time¼ 6min 8 s).

Other measurements. A set of questionnaires was administered in the morning
and evening and after each scanning session (see Supplementary Note 1 for
complete listing of questions). All survey data were collected using a custom survey
created with the appsoma.com system, and saved to a CouchDB database server for
later analysis. All scores were rectified so that values were consistent with the name
of the variable.

Naked weight and estimated body fat were measured upon waking using the
FitBit Aria scale. Weight remained within a relatively small range during the study
(mean¼ 68.0 kg, range: 65.8–69.9 kg), showing a slow rise over the first 10 months
of the study and a decline afterwards.

Sleep was measured on most nights before scanning sessions using ZEO sleep
monitor. Data were missing for a number of nights due to the sensor falling off or
sensor failure.

Daily weather data (high- and low-temperature and precipitation) were obtained
from NOAA (http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N&callsign=ATT).

Audiometry. During the pilot period, the participant noticed an increase in the
level of his pre-existing tinnitus. Because of the potential for noise-induced hearing
damage, baseline audiometry was performed at the UT Speech and Hearing Clinic
on 16 October 2012 (within 8 h of a scanning session), 17 October 2012 and 19
October 2012 (both roughly 26 h after the previous scanning session). These exams
showed moderate hearing loss (40–60 dB HL) in the high-frequency range (at or
above 3 kHz), which was consistent across the two sessions. In addition, there was a
slight (10–15 dB HL) loss in the lower frequencies, which was restored by 5 dB in
the later tests, suggesting a potential short-term effect possibly due to seasonal
allergies. Distortion product otoacoustic emission (DPOAE) testing on the first
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testing day showed consistent results, with impaired function at 3 and 4 kHz.
Tympanometry and reflex threshold testing were performed at the first exam, and
were normal. These findings are consistent with noise-related hearing loss that was
almost certainly pre-existing at the onset of scanning (based on the subject’s history
of environmental noise exposure and long-standing tinnitus), though the lack of
previous audiometry makes this impossible to confirm. Audiometry was repeated
regularly to assess potential further hearing damage. On 6 March 2013, audiometry
showed increased hearing loss, increasing to 70 dB HL at 6,000Hz. For this reason,
imaging was temporarily stopped. The protocol was re-started on 30 April 2013
with a more limited set of measurements (that is, limited to functional acquisitions
for which the active noise cancellation system could be employed). Follow-up
testing was performed on 1 May 2013, which showed that the apparent loss was
not sustained. Final testing after completion of the study showed no clinically
significant changes from the initial tests.

Omics profiling. Blood was drawn every Tuesday around 0800 hours, following
the MRI scan, by a phlebotomist at the UT Student Health Center Laboratory. The
subject abstained from food and beverages (other than water) from 2000 hours the
previous night until after the blood draw was completed. The standard blood draw
included two 10ml venous blood collection tubes (lavender Kþ /EDTA), which
were transported immediately to the UT Genomic Sequencing and Analysis Facility
for processing. In addition, a 5-ml lavender EDTA tube was collected once per
month for CBC/differential analysis. On several occasions, additional blood was
taken to perform comprehensive metabolic panels. A total of 48 samples were
collected.

PBMCs were harvested by Ficoll gradient from whole blood. The PBMC
population was then split into two equal fractions: one washed in PBS and frozen
for future use and one immediately placed in lysis solution to eliminate nuclease
activity for RNA isolation. Plasma was saved for future analysis.

RNA sequencing. RNA was extracted using the Qiagen RNeasy Mini Kit. RNA
integrity number (RIN) was measured using an Agilent Bioanalyzer. RNA libraries
were prepared for sequencing according to vendor protocols using NEBNext R
Small RNA Library Prep Set for Illumina R (Multiplex Compatible), Cat #E7330L,
according to the protocol described by Podnar et al.22 RNA was fragmented using
elevated temperature in carefully controlled buffer conditions to yield average
fragment sizes of 200 nucleotides. These fragments were directionally ligated to
50 and 30 adaptors so that sequence orientation is preserved throughout sequencing.
Reverse transcription and PCR were performed to complete the DNA sequencing
libraries, which were then sequenced on the HiSeq 2500.

Metabolomics. Metabolomic profiling was performed by the West Coast
Metabolomics Center at UC Davis41. Thirty-microlitre aliquots of serum are
extracted by 1ml of degassed acetonitrile: isopropanol: water (3:3:2, v/v/v ) at
20 �C, centrifuged and decanted with subsequent evaporation of the solvent to
complete dryness. A clean-up step with acetonitrile/water (1:1) removes membrane
lipids and triglycerides. The cleaned extract is aliquoted into two equal portions
and the supernatant is dried down again. Internal standards C08-C30 FAMEs
are added and the sample is derivatized by methoxyamine hydrochloride in
pyridine and subsequently by N-methyl-N-trimethylsilyltrifluoroacetamide for
trimethylsilylation of acidic protons. Data are acquired using the following
chromatographic parameters, with more details to be found in ref. 42. Column:
Restek Corporation rtx5Sil-MS (30m length� 0.25mm internal diameter with a
0.25-mm film made of 95% dimethly/5%diphenylpolysiloxane), mobile phase:
helium, column temperature: 50–330 �C, flow rate: 1mlmin� 1, injection volume:
0.5 ml, injection: 25 splitless time into a multi-baffled glass liner, injection
temperature: 50 �C ramped to 250 �C by 12 �C s� 1, gradient: 50 �C for 1min, then
ramped at 20 �Cmin� 1 to 330 �C, held constant for 5min. A Leco Pegasus IV
mass spectrometer is used with unit mass resolution at 17 spectra per second from
80 to 500Da at � 70 eV ionization energy and 1,800V detector voltage with a
230-�C transfer line and a 250-�C ion source. ChromaTOF (version 2.32) was used
for data preprocessing without smoothing, 3 s peak width, baseline subtraction just
above the noise level and automatic mass spectral deconvolution and peak
detection at signal/noise levels of 5:1 throughout the chromatogram. Apex masses
were submitted to the BinBase algorithm using the settings: validity of
chromatogram (o10 peaks with intensity 4107 counts per s), unbiased retention
index marker detection (MS similarity 4800, validity of intensity range for high-
m/z marker ions), retention index calculation by 5th-order polynomial regression.
Spectra are cut to 5% base peak abundance and matched to database entries from
most to least abundant spectra using the following matching filters: retention index
window±2,000 units (equivalent to about±2 s retention time), validation of
unique ions and apex masses (unique ion must be included in apexing masses and
present at 43% of base peak abundance), mass spectrum similarity must-fit
criteria dependent on peak purity and signal/noise ratios and a final isomer filter.
Peak height values were normalized across samples by dividing by the mean peak
height across all metabolites. For the purposes of further analysis, only metabolites
with known chemical names were used (106 named metabolites out of 258 total).

Genomics. Genotyping was performed commercially by 23andMe; it was origin-
ally performed on the V2 platform and then updated to the V3 platform, giving a
total of 996,000 single-nucleotide polymorphisms. In addition, whole-exome
sequencing was performed. At the first and third collection, 200 ml of whole blood
were used for DNA isolation. Ten micrograms of genomic DNA were used to
create next-generation sequencing libraries for exome sequencing. The standard
Illumina DNA fragment library protocol was used to shear, end-repair, dA-tail and
ligate sequencing adaptors.

These finished libraries were enriched using the Nimblegen SeqCap kit.

Data analysis. Analysis code is openly accessible at https://github.com/poldrack/
myconnectome and http://www.nil.wustl.edu/labs/petersen/ Resources.html.

A fully reproducible analysis workflow was developed for the present data set
using virtual machine provisioning. Using this system, it is possible to replicate all
of the reported statistical analyses on one’s own computer. The system installs a
virtual machine and all necessary software, downloads the necessary data and runs
the analyses. To use the virtual machine:

(1) Install the necessary software dependencies:

� VirtualBox virtual machine software (https://www.virtualbox.org/wiki/
Downloads)

� Vagrant provisioning software (http://www.vagrantup.com/downloads)
� git version control software (https://git-scm.com/downloads)

(2) Move to the directory where you want to house the project, and then clone
the myconnectome vagrant set-up using the following command: git clone
https://github.com/poldrack/myconnectome-vm.git

(3) cd into the vm directory: cd myconnectome-vm
(4) set up the vagrant VM (which may take a significant amount of time) using the

command: vagrant up The final step will automatically start the analysis
processes, which will take several hours to complete. Using a web browser
on your local machine, you can view the analysis status and results at
http://192.128.0.20:5000. A precomputed version of the same results can be
viewed at http://results.myconnectome.org.

Time-series analyses. Time-series analyses relating the different types of data
(behavioural/imaging/omics) were performed in R. Initial examination of the time-
series data showed significant autocorrelation in many of the variables, so an
autoregressive modelling approach was employed using the auto.arima function
within the forecast package for R32, which automatically determines the
appropriate autoregressive model order and tests for association between variables.
Because of the uneven missingness across variables, each analysis was performed in
a bivariate manner, such that correlations between variables were not accounted for
in the analysis. Control for multiple tests was achieved in these analyses using the
Benjamini–Hochberg FDR correction at Po0.1, with additional thresholding for
absolute Pearson correlation 40.2 to exclude occasional significant results with
small observed correlations.

Email analysis. Sent emails were obtained for the period of the study, and were
preprocessed to extract the body text (excluding signatures and included messages)
and to remove common proper names. All texts were scanned for words from the
LIWC 2007 dictionary using RIOT Scan word counting software (version 1.8.2)43,
available from http://riot.ryanb.cc. Three measures were used: positive words,
negative words and the categorical dynamic index, which reflects the prevalence of
terms reflecting categorical versus dynamic thinking44.

fMRI preprocessing. All fMRI data were preprocessed according to a pipeline
developed at Washington University, St Louis45. Data were realigned to correct for
head motion and normalized to a mode of 1,000 (one multiplicative constant
applied to all voxels and all frames). Each session was registered to a single session
that had previously been registered to the mean T1-weighted structural image and
an atlas. The session-to-atlas transform was inverted and applied to the mean field
map so that the distortion correction could be applied in each session’s space. The
undistorted data were then re-registered to the atlas space. The transforms for head
motion correction and affine registration to atlas space were combined with the
field-map-based distortion correction to resample the data from the original
session space to the undistorted 3-mm isotropic atlas space in a single step using
FSL’s applywarp tool46.

Because field maps were not available for all sessions, a mean field map was
generated from 34 available field maps (after exclusion of four poor-quality field
maps based on visual inspection). Magnitude images were registered to each other,
and transforms were resolved (by reconstructing the n� 1 transforms between all
images using the n*(n� 1)/2 computed transform pairs47) and applied to generate
a mean magnitude image. The mean magnitude image was registered to an atlas
representative template, and transforms from magnitude image to atlas space were
computed for each session by combining the session-to-mean and mean-to-atlas
transforms. Phase images were then transformed using the composed transforms
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modified to eliminate intensity scaling (which was relevant only for the magnitude
images), and a mean phase image in atlas space was computed.

Artefacts were reduced using frame censoring, regression (excluding censored
frames) and spectral filtering45. Frames with framewise displacement 40.25mm
were censored, as well as uncensored segments of data lasting fewer than five
contiguous volumes (frames kept: 97.1±3.7%). Nuisance regressors included
whole brain, white matter and ventricular signals and their derivatives, in addition
to 24 movement regressors derived by Volterra expression48. Interpolation over
censored frames was computed by least-squares spectral estimation, so that
continous data could be bandpass filtered (0.009ofo0.08Hz).

fMRI surface mapping and parcellation. Surface generation and sampling of
functional data to anatomical surfaces followed a similar procedure as described in
Glasser et al.49 and Wig et al.50 First, following volumetric registration, anatomical
surfaces were generated from the subject’s MP-RAGE image using FreeSurfer’s
default recon-all processing pipeline (version 5.0). This pipeline included brain
extraction, segmentation, generation of white matter and pial surfaces, inflation of
the surfaces to a sphere, and surface shape-based spherical registration of the
subject’s native surface to the fsaverage surface51–54. The fsaverage-registered left
and right hemisphere surfaces were brought into register with each other using
deformation maps from a landmark-based registration of left and right fsaverage
surfaces to a hybrid left–right fsaverage surface (fs LR55) and resampled to a
resolution of 164,000 vertices (164k fs LR) using Caret tools56. Finally, the subject’s
164k fs LR surface was downsampled to a 32,492 vertex surface (fs LR 32k), which
allowed for analysis in a computationally tractable space while still oversampling
the underlying resolution of BOLD data used in subsequent analyses. The various
deformations from the native surfaces to the fs LR 32k surface were composed
into a single deformation map allowing for one-step resampling. The above
procedure results in a surface space that allows for quantitative analysis across
subjects as well as between hemispheres. A script for this procedure is available
on the Van Essen Lab website (http://brainvis.wustl.edu/wiki/index.php/Caret:
Operations/Freesurfer_to_fs_LR).

Surface processing of the BOLD data proceeded through the following steps.
First, the BOLD volumes are sampled to the subject’s individual native mid-
thickness surface (generated as the average of the white and pial surfaces) using the
ribbon-constrained sampling procedure available in Connectome Workbench
(version 0.7). This procedure samples data from voxels within the grey matter
ribbon (that is, between the white and pial surfaces) that lay in a cylinder
orthogonal to the local mid-thickness surface weighted by the extent to which the
voxel falls within the ribbon; it is designed to minimize partial-volume effects
arising from the low sampling resolution of the BOLD data relative to the structural
image acquisition57. Voxels with a time-series coefficient of variation 0.5 s.d. higher
than the mean coefficient of variation of nearby voxels (within a 5-mm sigma
Gaussian neighbourhood) are excluded from the volume to surface sampling, as
described in ref. 49. This procedure is designed to avoid sampling highly variable
voxels to the surface that likely contain large blood vessels that sit outside brain
tissue. Once sampled to the native surface, time courses were deformed and
resampled from the individual’s native surface to the 32k fs LR surface in a single
step using the deformation map generated as described above. Finally, the time
courses were smoothed along the 32k fs LR surface using a Gaussian smoothing
kernel (s¼ 2.55).

These surfaces are then combined with volumetric subcortical and cerebellar
data into the CIFTI format using Connectome Workbench49, creating full brain
time courses that exclude non-grey matter tissue. Subcortical (including
accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus)
and cerebellar voxels were selected based on the Freesurfer segmentation of the
individual subject. Volumetric data was smoothed within this mask with a
Gaussian kernel (s¼ 2.55) before being combined with the surface data.

Individual subject parcellation. An individual subject parcellation was generated
following the procedures described in detail in Gordon et al.6 and Wig et al.50, with
minor modifications related to processing single-subject as opposed to group
average data. In brief, for each hemisphere, whole-brain CIFTI-space correlation
maps were computed at every surface vertex from the BOLD time courses
concatenated across all sessions. For each vertex, spatial gradients of the similarity
of resting-state correlation maps were computed along the cortical surface. Edges in
the spatial gradients were identified by the watershed transform58 and averaged
across all vertices to generate an ‘resting state functional connectivity (RSFC)-
boundary map’, indicating the frequency with which a given vertex was identified
as an edge. To produce discrete parcels, the watershed transform was applied again
starting from all local minima. Parcels were merged together if they were
considered insufficiently dissimilar based on the edge frequency value (below the
55th percentile) in the RSFC-boundary map. We then eliminated all parcels and
portions of parcels in vertices with high boundary-map values (top quartile of
values in the boundary map), and parcels containing fewer than 20 cortical vertices
(B40mm2). This procedure generated a 616-region parcellation that forms the
basis for many of the subsequent analyses. An additional 14 subcortical regions
were obtained from the Freesurfer subcortical parcellation, giving a total of 630
regions for subsequent analysis.

Module assignment. The modular structure of the parcel-wise graph was derived
using the Infomap algorithm8, following Power et al.59 The parcel-wise adjacency
matrix was computed by cross-correlating the average time courses from each
parcel concatenated across all sessions. Connections were removed if the geodesic
distance between parcel centroids was o30mm. Module assignment was
computed at several correlation thresholds (ranging from 1 to 6% edge density, in
steps of 1%). Modules with eight or fewer parcels were eliminated from
consideration, and those parcels were considered unassigned. A ‘consensus’
assignment was derived by collapsing across thresholds, giving each node the
assignment it has at the sparsest possible threshold at which it was successfully
assigned. Small communities that were only present at a single threshold were
removed.

Resting fMRI: network analyses. For each of the regions identified in the
foregoing parcellation schemes, we estimated connectivity matrices using both full
(Pearson) correlation and partial correlation; censored time points were excluded
from computation of these correlation matrices. L1-regularized partial correlation
was estimated using the graphical lasso implemented in the QUIC R package60; the
regularization parameter was iteratively modified for each session to identify the
value at which the network had a density of 7.5%, and mean across sessions was
thresholded to obtain the specified level of network density. L2-regularized partial
correlation was estimated for each session using the rags2ridges R package61

with lambda¼ 0.0001. Graph–theoretic metrics of modularity, global efficiency
and participation index were computed using the Brain Connectivity Toolbox
http://www.brain-connectivity-toolbox.net/ using unthresholded (that is, signed
and weighted) correlation matrices.

Diffusion-weighted imaging processing. Diffusion data were processed using the
FSL Diffusion Toolbox. Using the pairs of images with opposite phase encoding,
the susceptibility-induced off-resonance field was estimated using a method similar
to that described in Andersson62 as implemented in FSL’s TOPUP tool, and the
two images were combined into a single corrected one. Simultaneous correction of
eddy-current effects and head motion was performed using the FSL EDDY tool.
Diffusion parameters were estimated at each voxel using BEDPOSTX with a
two-fibre model. Probabilistic tractography was performed using prob trackx2.
The cortical and subcortical parcels were spatially transformed into the space of the
diffusion data by registering the low-b image to the main anatomical image and
then inverting the warp. Tracking was performed using each parcel as a seed voxel,
with all other parcels specified as termination masks, white matter specified as a
waypoint mask and the cerebrospinal fluid (CSF) mask specified as a rejection
mask; the prob trackx2 distance correction was used. A total of 500,000 samples
was performed from each seed. Tract counts were summarized and used to
generate binarized adjacency matrices with a given tract density, for comparison
with resting-state connectomes.

Whole-exome sequencing analysis. Alignment to the hg19 reference genome
was performed using BWA-MEM (version 0.7.4)63. PCR duplicates were removed
using the samtools dedup tool. The GATK IndelRealigner module was used to
correct misalignments due to indels, and base quality scores were recalibrated using
the GATK BaseRecalibrator tool. Variant calling was performed using the GATK
Unified Genotyper and VariantRecalibrator tools.

RNA-seq analysis. Initial quality assurance was performed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Examination of RIN
values showed five sessions with RIN below the commonly used threshold of RIN
6. However, further examination of expression profiles using clustering did not
identify these sessions as outliers, and they were thus included in the analysis to
maximize sample size, with RIN values included as a nuisance covariate.

Paired-end reads were mapped to the hg19 reference genome using bowtie2
(version 2.2.2) via tophat (version 2.0.11)64. Per-gene read counts were obtained
using htseq-count (HTSeq package, version 0.5.4p5) (http://www-huber.embl.de/
users/anders/HTSeq/doc/index.html), resulting in counts for 23,715 genes.

For subsequent analyses using general statistical analysis tools (which are not
adapted to analysis of overdispersed count-valued data such as RNA-seq reads), we
generated variance-stabilized versions of the read counts. Read counts were first
normalized for library size using the estimateSizeFactors function (DeSeq package,
version 1.14.0)65, and genes were then filtered for a mean read count across
sessions of at least 4 and no more than 10,000, as well as filtering out small
RNAs (using the VEGA database66), resulting in 13,847 genes passing filtering
(removing 4,133 small RNAs, 5,508 below threshold and 221 above threshold). The
relationship between mean and dispersion of read counts was estimated using
estimateDispersions (DeSeq) and a variance-stabilizing transform was applied
using varianceStabilizingTransformation (DeSeq). Subsequent visual examination
of clustering across subjects and genes showed no visible evidence of outliers.

Gene network analysis. Gene networks were identified from the RNA-seq data
using WGCNA23, which was applied to the variance-normalized count data, using
the WGCNA R package67 (version 1.47). Before performing WGCNA, each gene
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was regressed against RIN values for each session along with the top three principal
components estimated across all genes (to remove global effects due to technical
variation across sessions), and the residuals were used for the WGCNA analysis.
The power for soft thresholding was chosen as 8 based on the scale-free criterion.
Correlations were estimated using a robust bicorrelation mid-weight estimator. The
resulting networks were further functionally characterized using DAVID24. The set
of genes associated with each module was submitted to DAVID for functional
annotation. The default background set (comprising all human genes) was used.
Two separate annotation analyses were used. One focused on curated biological
pathways, using the following pathway databases: Reactome68, Panther69 and
BioCarta (http://www.biocarta.com/). A second analysis used Gene Ontology
biological processes and molecular functions; while this database includes a larger
number of annotated gene associations, most of these are not manually curated or
experimentally verified, and thus are more likely to reflect false positives70.

Phenome-wide network analyses. All of the different data types were combined
using a phenome-wide network analysis approach. For this approach, the
associations between each pair of variables (for example, all behavioural
phenotypes versus all metabolites) were computed using the automated ARIMA
model selection approach and thresholded at FDR qo0.05. To make the graph
more interpretable, within-type connections were excluded for gene modules and
metabolites; in addition, graph–theoretic functional connectivity measures were
excluded because they are derivative of the other connectivity measures included in
the analysis. Significant associations (either positive or negative) between variables
were treated as edges in the graph. Clustering was performed using Infomap
implemented in igraph (version 0.7.1), and visualization was performed using the
Cytoscape software package71 (version 3.2.1).

GOBS data set. The GOBS study sample28 consists of Mexican-American
individuals from large extended pedigrees sampled randomly from the San
Antonio community. The sample analysed for the present study (which included
all subjects for whom fMRI and gene expression data had passed quality assurance)
included 591 invididuals (236 male, mean age 43 years, range 18–85). All
experiments were performed with IRB approval from the University of Texas
Health Science Center at San Antonio (UTHSCSA). All participants provided
written informed consent on forms approved by the Institutional Review Boards at
the UTHSCSA and Yale University.

Transcriptomic methods for the GOBS study were similar to those previously
described in detail by Sprooten et al.29 Briefly, peripheral blood samples were
obtained in the morning after an overnight fast during the MRI clinic visit of study
participants, and lymphocytes were isolated from the fresh samples and
subsequently frozen and stored. Genome-wide transcriptional profiles were
generated using the Illumina HumanHT-12 v3.0 Expression BeadChip, which
contains more than 47,000 unique probes in total, hybridization to which is
assessed at 30 different beads on average.

Individual probes were mapped to genes, taking the probe with the highest
mean expression level across subjects for each gene72. These gene-level expression
measures were then combined using the gene clusters identified from the
MyConnectome data set, as well as clusters identified by performing WGCNA
directly on the GOBS data. In each case, the first principal component was
computed across genes to obtain a cluster eigengene for each cluster and all
subjects, after removing the top five principal components computed across all
transcripts as well as the top 10 genotypic principal components to reduce effects of
admixture. Heritability of expression was assessed using the SOLAR software
package73 (http://solar.txbiomedgenetics.org/).
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